首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Droplet deposition processes by the mechanisms of either aerodynamics or electrostatic spray have been widely studied in various applications such as aerosol generators, thin film coatings, and nanoparticle formations. Among the current state-of-art methodologies, air spray deposition can produce small-sized droplets without fine control on their sizes and uniformity in deposited thin films. Conventional electrospray depositions, on the other hand, can fabricate thin films with good uniform with a relatively slow deposition speed. In this paper, a hybrid mechanism by means of aerodynamic and electrostatic deposition is investigated and demonstrated to allow high throughput and improved uniformity for thin film depositions. It utilizes both the electrostatic force and aerodynamic force to atomize the liquid and control the droplet spraying process with good stability/repeatability. A uniform thin TiO2 film has been deposited as the demonstration example using this method. The velocities and trajectories of droplets during the deposition process have been characterized under different experimental parameters by using the technique of particle image velocimetry (PIV). This hybrid thin film fabrication method could be applicable in several industrial processes for better uniformity in making transparent electrodes, solar cells, displays, and automobiles.  相似文献   

2.
In this paper results of investigations are described aiming to numerically simulate the electrostatic powder coating process using an extended commercial computational fluid dynamics (CFD) code. The fully three-dimensional turbulent flow was calculated. Based on the Lagrangian approach the trajectories of the powder particles were modelled considering electric and aerodynamic forces. In the calculations of the particle propagation both the particle size distribution and the particle charge distribution obtained through experiments have been applied. The model accounts for the space charge effect of the charged particles and the turbulence dispersion on the particle trajectories. It was found that the space charge plays an important role for the final spray pattern shape, also increasing the transfer efficiency. The numerical results, such as velocity profiles, static and dynamic film thickness on the target were in good agreement with experiment.  相似文献   

3.
Electrohydrodynamic atomization (EHDA), or simply Electrospraying is the process of influencing the breakup of a liquid into droplets by using a strong electric field. There can be different modes of Electrospraying depending, basically, on the created electric field strength and the liquid flowrate, for a specified liquid. Among these modes, the so-called cone-jet mode is the most explored one. This is due to its ability to produce highly charged monodisperse droplets in the nano- to micro-meter size range. Another mode of interest, which can also produce monodisperse droplets is the simple-jet mode. This mode is less explored when compared to the former. Within the papers that were explored by the authors, Agostinho et al. (2012) were the first authors to carefully investigate and characterize this mode. In their work, the authors reported about the influence of the electric field and the liquid flowrate on the droplets' size and spray dispersion. They also pointed out that the charge on these droplets can be expressed as a certain percentage of their Rayleigh limit.So far, there has been no model proposed to describe the droplets' trajectories in the simple-jet mode. This paper describes the design and the implementation of a physical model for determining the droplet trajectories in this mode. The model is done, specifically, for a single nozzle/ring-up configuration. It is a two-dimensional model, which solves the force balance equation for each droplet breaking up from the jet. It takes into consideration; the initial droplet velocity, the force of gravity, the electric field force, the inter-droplet coulombic force and the drag force. The droplets' deformation and reorientation were hypothesized, from observations, to play a major role in initiating the droplets' dispersion. They were simulated by implementing periodic displacements on the droplets' center of charge from its center of mass. The calculated droplets' trajectories' envelope angle was fitted to the experimental envelope angle by adjusting the droplet charge around the values that were reported by Agostinho et al. (2012). The model was validated by comparing the shapes of the theoretical and experimental sprays.The model offers new possibilities of modeling the droplets' trajectories in complex geometries, and of introducing additional forces to manipulate their trajectories in the simple-jet mode.  相似文献   

4.
In kinetic spray processes, the non-uniformity of resultant composite coatings is generally caused by the difference in critical velocity and deposition efficiency between the components of a mixed feedstock. In the present paper, the effects of process parameters, such as feed rate, spray distance, and particle velocity, on the compositional variation between the mixed feedstock and resultant composite coating have been investigated. The results showed that the high diamond fraction in the coating can be achieved using a low feed rate, intermediate spray distance, and high impact particle velocity. The possibility of impact between hard brittle diamond particles is the main factor affecting the diamond fraction in the coating. Although the deposition efficiency, diamond fraction, and bond strength of the coating increase with particle velocity, a slight decrease of cohesive strength between diamond particle and bronze base was also observed.  相似文献   

5.
为考察溶液注入热等离子体喷涂过程中喷雾参数对涂层质量的影响,本文建立了溶液液滴在热等离子体中运动蒸发的数学模型。模拟了液滴在不同参数下的运动和蒸发的过程,考虑了液滴、热等离子气流及液滴表面气体混合物随温度及组分的物性变化以及斯蒂芬流的影响,得到液滴的运动轨迹,蒸发速率以及半径和表面温度的变化。结果表明在一定范围内增大液...  相似文献   

6.
7.
High‐speed rotary bell atomizers are widely used in the painting industry for high quality applications. They provide a highly uniform film thickness with reasonable transfer efficiency due to the additional electrostatic field supporting the droplet transport towards the target. A basic requirement for this type of paint atomizer is a fine and reproducible atomization of a large variety of different paints, ranging from solvent‐based materials to highly non‐Newtonian water‐borne systems. Furthermore, a broad range of paint flow rates must be covered. The present contribution summarizes investigations aiming to completely model the electrostatically supported spray painting process by means of CFD. In part I, so‐called direct charging atomizers, where high voltage is applied directly to the rotating bell, are considered. Here, charging of the droplets takes place at the bell edge and corona effects can be neglected. A powerful commercial code, in the present case Fluent in its current releases, has been extended to account for the electrostatic field and the space charge effect due to the charged paint droplets. As input conditions, the air flow from the shaping air orifices and measured droplet sizes and velocities close to the bell edge using phase‐Doppler anemometry and Fraunhofer diffraction were taken. Also, LDA measurements in front of the target were performed, yielding comparative data of the airflow field. In general, numerical and experimental results are in good agreement. This is especially true for the final film thickness on the target and the transfer efficiency, i.e. the amount of paint solids finally deposited on the target. The agreement was achieved using a droplet charge of 5% of the droplet size dependent Rayleigh limit. These results serve as a basis for a complete painting process simulation for complex work pieces, e.g. whole car bodies, in the future. This task, however, can only be successfully completed performing unsteady calculations with moving atomizers along given robot paths.  相似文献   

8.
小液滴撞击壁面现象在喷雾冷却等领域都有广泛应用.为研究小液滴(微米)撞击热壁面(非沸腾区)传热过程,建立了二维液滴撞壁瞬态模型,并采用相场方法对小液滴换热过程中对流热通量和导热热通量的大小进行了对比.研究结果表明:液滴撞击壁面初期形成“冷斑”,有利于小液滴与壁面的传热;小液滴撞击壁面过程中热通量峰值存在于三相接触点附近,数量级在105—106 W/m2;小液滴撞击壁面过程中受壁面浸润性和液滴尺寸对传导热通量的影响较为显著,而速度和液滴尺寸对对流热通量的影响较为显著;大多数情况下,小液滴撞击壁面传导热通量数量级在103—105 W/m2,对流热通量数量级在104—106 W/m2,对流热通量大于传导热通量,在整个换热过程中占据主导地位.  相似文献   

9.
喷雾蒸发燃烧的研究对指导发动机燃烧系统设计具有重要意义。本文搭建了高速数字全息系统,在线测量乙醇喷雾火焰中液滴的粒径、三维位置、速度及蒸发率。对喷雾火焰中的液滴进行了统计分析,得到液滴粒径及三维空间分布。燃烧喷雾场液滴的平均粒径为68μm;非燃烧火焰测试区液滴数量多且较密集,燃烧火焰测试区液滴数量少且稀疏.追踪单液滴并处理得到湍流火焰中液滴的运动轨迹及速度。通过研究粒径的平方D2随停留时间ts的变化,测得液滴平均蒸发率为-3.343×10-7 m2/s.  相似文献   

10.
Numerical study of semi-molten droplet impingement   总被引:1,自引:0,他引:1  
Due to the low thermal conductivity of ceramics large temperature gradients are present through the powder particles during plasma spray deposition. As a result the particles often impinge at the substrate in a semi-molten form; which in turn substantially affects the final characteristics of the coating being formed. This study is dedicated to the novel modelling development and simulation of a semi-molten droplet impingement. The study examines the impingement process during impact, spreading and solidification of semi-molten zirconia. The simulation provides an insight to the heat transfer process during impact and solidification of a semi-molten powder particle and illustrates the freezing-induced break-up mechanism at the splat periphery.  相似文献   

11.
An electrostatic atomization technique has been developed to generate ultra-fine spray of ZrO2 and SiC ceramic suspensions in a range of 4–5 μm with a narrow size distribution (1–9 μm). The aim of this work is to generate fine spray of ceramic suspensions for the preparation of uniform thin films of these ceramic materials on substrates. Thin-film formation using electrostatic atomization process allows one to tightly control the process while meeting the economics in comparison with some other competing process technologies such as chemical vapour deposition, physical vapour deposition and plasma spray, etc. Preliminary results have shown that for low through put atomization, the cone-jet is the most suitable method to produce a fine charged aerosol with a narrow size distribution. It was found that the droplet size of the spray is in the range of a few micrometers with a narrow size distribution and that droplet size and spray current obey theoretical prediction of scaling law. As prepared ZrO2 and SiC thin films were observed to be homogenous with a particle size of less than 10 μm.  相似文献   

12.
基于喷雾冷却时液滴撞击壁面现象,本文采用CLSVOF(coupled level set and volume of fluid)方法对不同工况下单液滴撞壁过程进行数值模拟,获得了单液滴撞击热壁面动态特性;分析了初始速度、液滴直径等初始参数对液滴撞壁后的动态铺展规律以及壁面换热特性的影响规律,获得了上述参数变化时液滴铺展系数和热流密度的变化趋势;探讨了场协同效应、液滴内部气泡以及三线接触点对壁面换热的影响。碰壁现象的研究对于大型制冷机组室外机散热、高热流电子器件散热等领域优化与控制喷雾有重要意义。  相似文献   

13.
Daylight visible fluorescent dye (10% v/v) mixed with water was aerially applied on mature field cotton with electrostatic and rotary atomizer nozzles. The spray rates for the electrostatic and rotary atomizer nozzles were 9.4 and 28 L/ha, respectively. Images of spray droplets on cotton leaves were digitally analyzed with ImageJ software. Charged spray cloud increased deposition nearly two to three times on adaxial and abaxial surfaces, respectively, of top canopy leaves compared to uncharged spray. Canopy penetration of the spray into the lower layers of the plant foliage was unaffected by spray application method.  相似文献   

14.
《Journal of Electrostatics》2006,64(3-4):194-202
A multi-nozzle electrospray system was developed as a charged droplet source for cleaning a gas contaminated with fine particles. The efficiency of removal of fine particles from the gas can be significantly increased, as compared to uncharged sprays, when the droplets are electrically charged. In the presented experiments, the spray of the droplets of size lower than 100 μm was charged either positively or negatively. Cigarette smoke was used as a source of submicrometer particles. The suppression of the particle concentration was determined after different time intervals of spraying of water. Further improvement in gas cleaning was obtained after charging the smoke particles using a specially designed corona charger. The efficiency of the cleaning process was similar to that obtained for droplets generated by mechanical atomisers with induction charging, but the electrospraying allowed decreasing the water consumption up to about three times.  相似文献   

15.
Airborne inhalable particulate in the workplace can represent a significant health hazard, and one of the primary sources of particles is mist produced through the application of cutting fluids in machining operations. The atomization process is one of the principal mechanisms associated with cutting fluid mist formation and generates droplets from fifty to a few thousand micrometers in size. These particles subsequently undergo vaporization and settling effects resulting in an aerosol to which workers may be exposed. While a variety of equipment is available to characterize the fine particulate in the breathing zone, standard equipment to measure the size of the atomized droplets is not available. In this paper, an imaging system is employed to characterize the large droplets produced by atomization in turning. One of the drawbacks of such a system is the time‐consuming experimental calibration procedure that is required to improve the accuracy of the droplet size measurements and extend the depth of field of the imaging system. With this in mind, an approach is introduced to predict droplet diameter based on measurement data without physical system calibration. The relationship between the actual diameter and the measured diameter is established based on an imaging system simulation model that includes a three dimensional point spread function and an image formation relationship grounded in the principles of geometric optics. These two components are combined using convolution integral theory to derive an image intensity profile. The introduction of halo width into the simulation greatly extends the image depth of field, which is a critical factor in capturing more droplets in one image and also minimizing particle size distribution bias towards larger droplets. The model predicts droplet diameter as a function of measured diameter and halo width. Model behavior of predicted diameters from the simulation compares well with those from a physical calibration of the system. The numerical calibration model is then used in the study of cutting fluid atomization in a turning process, and the measured droplet size distribution compares favorably with droplet sizes predicted by a mechanistic atomization model.  相似文献   

16.
Several alumina suspensions were subjected to electrostatic atomisation at a constant applied voltage and constant flow rate. Various spray modes were observed and the sizes of droplets produced from each suspension were measured using laser diffraction. The sizes of relics obtained by depositing these droplets on a silicone release paper substrate were measured using optical microscopy. Using volume equivalence the relic sizes were used to calculate the size of the droplets, thus allowing a comparison with the laser diffraction results. The calculated and measured droplet distributions showed excellent agreement. PACS 81.05.Je; 81.20.Ev; 81.20.Rg; 47.27.Wg; 47.85.Np  相似文献   

17.
18.
在工程上通常利用滴状冷凝提高冷凝换热效率、进而强化传热。而当冷凝液滴发生合并自弹跳时,冷凝换热系数是传统滴状冷凝的1.3至1.5倍,因此液滴合并自弹跳现象对冷凝传热强化的贡献是非常大的。一些宏观实验和理论研究表明,加入外电场能进一步促进冷凝液滴合并自弹跳的频率和高度,但在纳米尺度下是否仍遵守这一规律还未可知,因此本文使用分子动力学模拟方法,探究了在超疏水表面上电场的方向和强度对纳米纯水液滴合并自弹跳行为的影响,模拟结果表明垂直向上方向电场会抑制液滴合并自弹跳,垂直向下方向存在一个电场促进弹跳的区间,在此区间内电场强度越大,弹跳速度越大.  相似文献   

19.
Experiments are described in which particle image velocimetry (PIV) is applied to the measurement of liquid droplets in a spray jet. The two velocity components in planes formed by the light sheet originating from a double-pulsed ruby laser are determined. The PIV records are evaluated with the method of Young's fringes. It is shown that this procedure allows the simultaneous measurement of the droplet size within a certain size range.  相似文献   

20.
A numerical investigation has been carried out to examine the electrostatic loss of nanoparticles in a corona needle charger. Two-dimensional flow field, electric field, particle charge, and particle trajectory were simulated to obtain the electrostatic deposition loss at different conditions. Simulation of particle trajectories shows that the number of charges per particle during the charging process depends on the particle diameter, radial position from the symmetry axis, applied voltage, Reynolds number, and axial distance along the charger. The numerical results of nanoparticle electrostatic loss agreed fairly well with available experimental data. The results reveal that the electrostatic loss of nanoparticles increases with increasing applied voltage and electrical mobility of particles; and with decreasing particle diameter and Reynolds number. A regression equation closely fitted the obtained numerical results for different conditions. The equation is useful for directly calculating the electrostatic loss of nanoparticles in the corona needle charger during particle-charging process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号