首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
In this paper, different heuristics are devised to solve a multi-period capacity expansion problem for a local access telecommunications network with a tree topology. This expansion is done by installing concentrators at the nodes and cables on the links of the network. The goal is to find a least cost capacity expansion strategy over a number of periods to satisfy the demand. A local search heuristic is first proposed to improve previously reported results on problem instances based on different cost and demand structures. This heuristic is then integrated into a genetic algorithm to obtain further improvements.  相似文献   

2.
This paper examines a network design problem that arises in the telecommunications industry. In this problem, communication between a gateway vertex and a number of demand vertices is achieved through a network of fiber optic cables. Since each cable has an associated capacity (bandwidth), enough capacity must be installed on the links of the network to satisfy the demand, using possibly different types of cables. Starting with a network with no capacity or some capacity already installed, a tabu search heuristic is designed to find a solution that minimizes the cost of installing any additional capacity on the network. This tabu search applies a k-shortest path algorithm to find alternative paths from the gateway to the demand vertices. Numerical results are presented on different types of networks with up to 200 vertices and 100 demand vertices.  相似文献   

3.
This paper presents a new combinatorial optimization problem that can be used to model the deployment of broadband telecommunications systems in which optical fiber cables are installed between a central office and a number of end-customers. In this capacitated network design problem the installation of optical fiber cables with sufficient capacity is required to carry the traffic from the central office to the end-customers at minimum cost. In the situation motivating this research the network does not necessarily need to connect all customers (or at least not with the best available technology). Instead, some nodes are potential customers. The aim is to select the customers to be connected to the central server and to choose the cable capacities to establish these connections. The telecom company takes the strategic decision of fixing a percentage of customers that should be served, and aims for minimizing the total cost of the network providing this minimum service. For that reason the underlying problem is called the Prize-Collecting Local Access Network Design problem (PC-LAN).  相似文献   

4.
This paper examines a variant of the network loading problem, a network design problem found in the telecommunications industry. In this problem, facilities of fixed capacity must be installed on the edges of an undirected network to carry the flow from a central vertex to a set of demand vertices. The objective is to minimize the total installation costs. In this work, the nonbifurcated version of the problem is considered, where the demand at any given vertex must be satisfied through a single path. The proposed heuristics alternate between a construction phase and a local search phase. Each new construction phase, except the first one, is part of a diversification strategy aimed at providing a new starting point for the following local search phase. Different diversification strategies are tested and compared on large-scale instances with up to 500 vertices.  相似文献   

5.
The concentrator location problem is to choose a subset of a given terminal set to install concentrators and to assign each remaining terminal node to a concentrator to minimize the cost of installation and assignment. The concentrators may have capacity constraints. We study the polyhedral properties of concentrator location problems with different capacity structures. We develop a branch and cut algorithm and present computational results.  相似文献   

6.
A distribution network problem arises in a lower level of an hierarchical modeling approach for telecommunication network planning. This paper describes a model and proposes a lagrangian heuristic for designing a distribution network. Our model is a complex extension of a capacitated single commodity network design problem. We are given a network containing a set of sources with maximum available supply, a set of sinks with required demands, and a set of transshipment points. We need to install adequate capacities on the arcs to route the required flow to each sink, that may be an intermediate or a terminal node of an arborescence. Capacity can only be installed in discrete levels, i.e., cables are available only in certain standard capacities. Economies of scale induce the use of a unique higher capacity cable instead of an equivalent set of lower capacity cables to cover the flow requirements of any link. A path from a source to a terminal node requires a lower flow in the measure that we are closer to the terminal node, since many nodes in the path may be intermediate sinks. On the other hand, the reduction of cable capacity levels across any path is inhibited by splicing costs. The objective is to minimize the total cost of the network, given by the sum of the arc capacity (cables) costs plus the splicing costs along the nodes. In addition to the limited supply and the node demand requirements, the model incorporates constraints on the number of cables installed on each edge and the maximum number of splices at each node. The model is a NP-hard combinatorial optimization problem because it is an extension of the Steiner problem in graphs. Moreover, the discrete levels of cable capacity and the need to consider splicing costs increase the complexity of the problem. We include some computational results of the lagrangian heuristics that works well in the practice of computer aided distribution network design.  相似文献   

7.
This paper presents two facility location models for the problem of determining how to optimally serve the requirements for communication circuits between the United States and various European and Middle Eastern countries. Given a projection of future requirements, the problem is to plan for the economic growth of a communications network to satisfy these requirements. Both satellite and submarine cable facilities may be used. The objective is to find an optimal placement of cables (type, location, and timing) and the routing of individual circuits between demand points (over both satellites and cables) such that the total discounted cost over a T-period horizon is minimized. This problem is cast as a multiperiod, capacitated facility location problem. Two mathematical models differing in their provisions for network reliability are presented. Solution approaches are outlined and compared by means of computational experience. Use of the models both in planning the growth of the network and in the economic evaluation of different cable technologies is also discussed.  相似文献   

8.
In the connected facility location problem with buy-at-bulk edge costs we are given a set of clients with positive demands and a set of potential facilities with opening costs in an undirected graph with edge lengths obeying the triangle inequality. Moreover, we are given a set of access cable types, each with a cost per unit length and a capacity such that the cost per capacity decreases from small to large cables, and a core cable type of infinite capacity. The task is to open some facilities and to connect them by a Steiner tree using core cables, and to build a forest network using access cables such that the edge capacities suffice to simultaneously route all client demands unsplit to the open facilities. The objective is to minimize the total cost of opening facilities, building the core Steiner tree, and installing the access cables. In this paper, we devise a constant-factor approximation algorithm for this problem based on a random sampling technique.  相似文献   

9.
In this article we consider a real-world problem submitted to us by the Hatch company. This problem consists of designing a collection network for a wind farm, assuming that the locations of the turbines and the potential cables are known, several cable types are available, and the cost of the energy that dissipates through the cables is known. We propose a mixed integer quadratic programme to model the network design problem and then linearize the quadratic programme because the latter is too difficult to solve using a standard mathematical programming software. We describe several classes of inequalities that strengthen the resulting mixed integer linear programme. Finally we use real-world data supplied by Hatch to carry out computational experiments with several versions of our model.  相似文献   

10.
11.
In the assignment problem units of supply are assigned on a one-to-one basis to units of demand so as to minimize the sum of the cost associated with each supply-to-demand matched pair. Defined on a network, the supplies and demands are located at vertices and the cost of a supply-to-demand matched pair is the distance between them. This paper considers a two-stage stochastic program for locating the units of supply based upon only a probabilistic characterization of demand. The objective of the first-stage location problem is to minimize the expected cost of the second-stage assignment problem. Principal results include showing that the problem is NP-hard on a general network, has a simple solution procedure on a line network, and is solvable by a low order polynomial greedy procedure on a tree network. Potential applications are discussed.  相似文献   

12.
Topological design of centralized computer communication networks is a complex problem that is generally solved in two phases. The first phase of the design process involves dividing network nodes (terminals or clusters of terminals) into groups, and selecting a concentrator location for each group so that all the nodes in a group are assigned to the same concentrator. The next phase determines topology of links that connect network nodes to concentrators and concentrators to each other and to the central computer. The design problem studied in this paper contains some aspects of both phases. In this problem locations of concentrators, assignments of user nodes to concentrators and the topology of the links connecting concentrators to the central computer are jointly determined. The proposed design method is built around the well known sweep heuristic which is used to partition the node space into sectors. Each of these sectors contain a backbone path connecting concentrators to the central computer.  相似文献   

13.
In this paper, we focus on a variant of the multi-source Weber problem. In the multi-source Weber problem, the location of a fixed number of concentrators, and the allocation of terminals to them, must be chosen to minimize the total cost of links between terminals and concentrators. In our variant, we have a third hierarchical level, two categories of link costs, and the number of concentrators is unknown. To solve this difficult problem, we propose several heuristics, and use a new stabilized column generation approach, based on a central cutting plane method, to provide lower bounds.  相似文献   

14.
The convex cost network flow problem is to determine the minimum cost flow in a network when cost of flow over each arc is given by a piecewise linear convex function. In this paper, we develop a parametric algorithm for the convex cost network flow problem. We define the concept of optimum basis structure for the convex cost network flow problem. The optimum basis structure is then used to parametrize v, the flow to be transsshipped from source to sink. The resulting algorithm successively augments the flow on the shortest paths from source to sink which are implicitly enumerated by the algorithm. The algorithm is shown to be polynomially bounded. Computational results are presented to demonstrate the efficiency of the algorithm in solving large size problems. We also show how this algorithm can be used to (i) obtain the project cost curve of a CPM network with convex time-cost tradeoff functions; (ii) determine maximum flow in a network with concave gain functions; (iii) determine optimum capacity expansion of a network having convex arc capacity expansion costs.  相似文献   

15.
The network loading problem (NLP) is a specialized capacitated network design problem in which prescribed point-to-point demand between various pairs of nodes of a network must be met by installing (loading) a capacitated facility. We can load any number of units of the facility on each of the arcs at a specified arc dependent cost. The problem is to determine the number of facilities to be loaded on the arcs that will satisfy the given demand at minimum cost.This paper studies two core subproblems of the NLP. The first problem, motivated by a Lagrangian relaxation approach for solving the problem, considers a multiple commodity, single arc capacitated network design problem. The second problem is a three node network; this specialized network arises in larger networks if we aggregate nodes. In both cases, we develop families of facets and completely characterize the convex hull of feasible solutions to the integer programming formulation of the problems. These results in turn strengthen the formulation of the NLP.Research of this author was supported in part by a Faculty Grant from the Katz Graduate School of Business, University of Pittsburgh.  相似文献   

16.
This paper examines a multi-period capacity expansion problem for rapid transit network design. The capacity expansion is realized through the location of train alignments and stations in an urban traffic context by selecting the time periods. The model maximizes the public transportation demand using a limited budget and designing lines for each period. The location problem incorporates the user decisions about mode and route. The network capacity expansion is a long-term planning problem because the network is built over several periods, in which the data (demand, resource price, etc.) are changing like the real problem changes. This complex problem cannot be solved by branch and bound, and for this reason, a heuristic approach has been defined in order to solve it. Both methods have been experimented in test networks.  相似文献   

17.
A mixed-integer non-linear model is proposed to optimize jointly the assignment of capacities and flows (the CFA problem) in a communication network. Discrete capacities are considered and the cost function combines the installation cost with a measure of the Quality of Service (QoS) of the resulting network for a given traffic. Generalized Benders decomposition induces convex subproblems which are multicommodity flow problems on different topologies with fixed capacities. These are solved by an efficient proximal decomposition method. Numerical tests on small to medium-size networks show the ability of the decomposition approach to obtain global optimal solutions of the CFA problem.  相似文献   

18.
The economic dispatch problem (EDP) is an optimization problem useful in power systems operation. The objective of the EDP of electric power generation, whose characteristics are complex and highly non-linear, is to schedule the committed generating unit outputs so as to meet the required load demand at minimum operating cost while satisfying system constraints. Recently, as an alternative to the conventional mathematical approaches, modern heuristic optimization techniques have been given much attention by many researchers due to their ability to find an almost global optimal solution in EDPs. As special mechanism to avoid being trapped in local minimum, the ergodicity property of chaotic sequences has been used as optimization technique in EDPs. Based on the chaos theory, this paper discusses the design and validation of an optimization procedure based on a chaotic artificial immune network approach based on Zaslavsky’s map. The optimization approach based on chaotic artificial immune network is validated for a test system consisting of 13 thermal units whose incremental fuel cost function takes into account the valve-point loading effects. Simulation results and comparisons show that the chaotic artificial immune network approach is competitive in performance with other optimization approaches presented in literature and is also an attractive tool to be used on applications in the power systems field.  相似文献   

19.
The aim of minimal cost flow problem (MCFP) in fuzzy nature, which is denoted with FMCFP, is to find the least cost of the shipment of a commodity through a capacitated network in order to satisfy imprecise concepts in supply or demand of network nodes and capacity or cost of network links. Fuzzy supply–demand may arise in real problems, where incomplete statistical data or simulation results are used. Also, variation in the cost or capacity of links is commonly happening. In the present paper, after defining a total order on LR type fuzzy numbers, three models are studied; MCFP with fuzzy costs, MCFP with fuzzy supply–demand and a combination of two cases. For the first model, scaling negative cycle cancelling algorithm, which is a polynomial time algorithm, is proposed. For the second model, “nominal flow” is introduced which provides an efficient scheme for finding fuzzy flow. For the third model, we present an exact and some heuristic methods. Numerical examples are illustrated to demonstrate the efficiency of the proposed schemes. Finally, an application of this viewpoint in bus network planning problem is provided.  相似文献   

20.
We consider a model to allocate stock levels at warehouses in a service parts logistics network. The network is a two-echelon distribution system with one central warehouse with infinite capacity and a number of local warehouses, each facing Poisson demands from geographically dispersed customers. Each local warehouse uses a potentially different base stock policy. The warehouses are collectively required to satisfy time-based service targets: Certain percentages of overall demand need to be satisfied from facilities within specified time windows. These service levels not only depend on the distance between customers and the warehouses, but also depend on the part availabilities at the warehouses. Moreover, the warehouses share their inventory as a way to increase achieved service levels, i.e., when a local warehouse is out of stock, demand is satisfied with an emergency shipment from another close-by warehouse. Observing that the problem of finding minimum-cost stock levels is an integer non-linear program, we develop an implicit enumeration-based method which adapts an existing inventory sharing model from the literature, prioritizes the warehouses for emergency shipments, and makes use of a lower bound. The results show that the proposed inventory sharing strategy results in considerable cost reduction when compared to the no-sharing case and the method is quite efficient for the considered test problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号