首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Metal–ferroelectric–insulator–semiconductor structures using LaAlO3 (LAO) layers as an insulating barrier have been investigated. LAO films were deposited on n-Si substrates by low-pressure metalorganic chemical vapor deposition (MOCVD). SrBi2Ta2O9 (SBT) films were prepared as ferroelectric layers at a low processing temperature of 650 °C by a metalorganic decomposition method. The MOCVD-derived LAO buffer layer shows an amorphous structure, relatively high dielectric constant, and good electrical properties. Au/SBT/LAO/n-Si exhibits a larger counterclockwise C–V memory window of 3.7 V and a lower leakage-current density of 2.5×10-8 A/cm2 at an applied voltage of 10 V. It has been confirmed that the hysteresis loop is caused by ferroelectricity. The Auger electron spectrometry depth profile indicates that the introduction of the LAO buffer layer prevents the interfacial diffusion between SBT and the Si substrate effectively and improves the interface quality. PACS 77.84.Dy; 81.15.Fg  相似文献   

2.
The phase chemical composition of an Al2O3/Si interface formed upon molecular deposition of a 100-nm-thick Al2O3 layer on the Si(100) (c-Si) surface is investigated by depth-resolved ultrasoft x-ray emission spectroscopy. Analysis is performed using Al and Si L2, 3 emission bands. It is found that the thickness of the interface separating the c-Si substrate and the Al2O3 layer is approximately equal to 60 nm and the interface has a complex structure. The upper layer of the interface contains Al2O3 molecules and Al atoms, whose coordination is characteristic of metallic aluminum (most likely, these atoms form sufficiently large-sized Al clusters). The shape of the Si bands indicates that the interface layer (no more than 10-nm thick) adjacent to the substrate involves Si atoms in an unusual chemical state. This state is not typical of amorphous Si, c-Si, SiO2, or SiOx (it is assumed that these Si atoms form small-sized Si clusters). It is revealed that SiO2 is contained in the vicinity of the substrate. The properties of thicker coatings are similar to those of the 100-nm-thick Al2O3 layer and differ significantly from the properties of the interfaces of Al2O3 thin layers.  相似文献   

3.
The structure and stability of amorphous LaAlO3 thin films deposited on Si substrates were investigated by an X-ray reflectivity technique. The results show that the film/substrate interface contains a LaxAlyOzSi layer and a SiOx layer. X-ray reflectivity profiles showed a continuous change after the films were exposed to ambient air for six months at room temperature. The X-ray reflectivity simulations suggest a diffusion of La and Al (mostly La) from the LaAlO3 layer to the LaxAlyOzSi layer. This process stopped after about six months, and then the films reached a relative equilibrium state. Moreover, post-air-exposure annealing at 300 °C in air atmosphere could not change the final distributions of La and Al along the normal to the film’s substrate. On the other hand, the leakage-current density slightly decreases after annealing at 300 °C, which might be caused by the decrease of oxygen vacancies in the films. PACS 61.10.Kw; 77.55.+f; 68.60.Dv  相似文献   

4.
The distribution of the phase and chemical composition at an Al2O3/Si interface is studied by depth-resolved ultrasoft x-ray emission spectroscopy. The interface is formed by atomic layer deposition of Al2O3 films of various thicknesses (from several to several nanometers to several hundreds of nanometers) on the Si(100) surface (c-Si) or on a 50-nm-thick SiO2 buffer layer on Si. L 2,3 bands of Al and Si are used for analysis. It is found that the properties of coatings and Al2O3/Si interfaces substantially depend on the thickness of the Al2O3 layer, which is explained by the complicated character of the process kinetics. At a small thickness of coatings (up to 10–30 nm), the Al2O3 layer contains inclusions of oxidized Si atoms, whose concentration increases as the interface is approached. As the thickness increases, a layer containing inclusions of metallic Al clusters forms. A thin interlayer of Si atoms occurring in an unconventional chemical state is found. When the SiO2 buffer layer is used (Al2O3/SiO2/Si), the structure of the interface and the coating becomes more perfect. The Al2O3 layer does not contain inclusions of metallic aluminum, does not vary with the sample thickness, and has a distinguished boundary with silicon.  相似文献   

5.
We studied the thermal stability of HfO2 on an InP structure when an Al2O3 interface passivation layer (PL) was introduced. In contrast to the thick (~4 nm) Al2O3‐PL, an almost complete disappearance of the thin (~1 nm) Al2O3‐PL was observed after a post‐deposition anneal at 600 °C. Based on various chemical and electrical analyses, this was attributed to the intermixing of the thin Al2O3‐PL with HfO2, which might have been accompanied by the out‐diffusion of a substantial amount of substrate elements. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
M. Liu  G. He  Q. Fang  G.H. Li 《Applied Surface Science》2006,252(18):6206-6211
High-k HfO2-Al2O3 composite gate dielectric thin films on Si(1 0 0) have been deposited by means of magnetron sputtering. The microstructure and interfacial characteristics of the HfO2-Al2O3 films have been investigated by using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and spectroscopic ellipsometry (SE). Analysis by XRD has confirmed that an amorphous structure of the HfO2-Al2O3 composite films is maintained up to an annealing temperature of 800 °C, which is much higher than that of pure HfO2 thin films. FTIR characterization indicates that the growth of the interfacial SiO2 layer is effectively suppressed when the annealing temperature is as low as 800 °C, which is also confirmed by spectroscopy ellipsometry measurement. These results clearly show that the crystallization temperature of the nanolaminate HfO2-Al2O3 composite films has been increased compared to pure HfO2 films. Al2O3 as a passivation barrier for HfO2 high-k dielectrics prevents oxygen diffusion and the interfacial layer growth effectively.  相似文献   

7.
Interfacial reactions of evaporated chromium with surface has been studied using Auger electron spectroscopy (AES). The results reveal that the interfacial region consists of a mixture, which is a double oxide of Cr and Al or two separated oxides. After annealing, the chromium oxide and the metallic Al produced by reduction of the Al3+ ions were easily detected by AES at the interface. We suggest that the interfacial reaction occurs mainly by the charge transfer from the 3d electrons of Cr atoms to O 2p orbitals of the Al2O3 substrate. The annealing at higher temperature (973 K) is favourable to promote the interfacial reaction between the surface oxygen and the initial few atomic monolayers of the deposited chromium. The results also showed that the change of the relative Auger peak-to-peak height (APPH(%)) of the Cr LMM group peaks can be used as an index to identify the oxidation states of chromium at the Cr/Al2O3 interface.  相似文献   

8.
LaAlO3 (LAO) gate dielectric films were deposited on Si substrates by low-pressure metalorganic chemical vapor deposition. The interfacial structure and composition distribution were investigated by high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), secondary-ion mass spectroscopy (SIMS), and Auger-electron spectroscopy (AES). HRTEM confirms that there exists an interfacial layer between LAO and Si in most samples. AES, SIMS, and XPS analyses indicate that the interfacial layer is compositionally graded La–Al silicate and the Al element is severely deficient close to the Si surface. Electrical properties of LAO films were evaluated. No evident difference in electrical properties between samples with and without native SiO2 layers was observed. The electrical properties are discussed in terms of LAO growth mechanisms, in relation to the interfacial structure. PACS 73.40.Qv; 81.15.Gh; 77.55.+f; 68.35.-p  相似文献   

9.
Epitaxial Gd2O3 thin films were successfully grown on Si (001) substrates using a two-step approach by laser molecular-beam epitaxy. At the first step, a ~0.8 nm thin layer was deposited at the temperature of 200 °C as the buffer layer. Then the substrate temperature was increased to 650 °C and in situ annealing for 5 min, and a second Gd2O3 layer with a desired thickness was deposited. The whole growth process is monitored by in situ reflection high-energy electron diffraction (RHEED). In situ RHEED analysis of the growing film has revealed that the first Gd2O3 layer deposition and in situ annealing are the critical processes for the epitaxial growth of Gd2O3 film. The Gd2O3 film has a monoclinic phase characterized by X-ray diffraction. The high-resolution transmission electron microscopy image showed all the Gd2O3 layers have a little bending because of the stress. In addition, a 5–6 nm amorphous interfacial layer between the Gd2O3 film and Si substrate is due to the in situ high temperature annealing for a long time. The successful Gd2O3/Si epitaxial growth predicted a possibility to develop the new functional microelectronics devices.  相似文献   

10.
The La2Hf2O7 films have been deposited on Si (1 0 0) substrate by using pulsed laser deposition (PLD) method. X-ray diffraction (XRD) demonstrates that the as-grown film is amorphous and crystallizes after 1000 °C annealing. The interface structure is systematically studied by Synchrotron X-ray reflectivity (XRR), Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS). Silicide, silicate and SiOx formations from interfacial reaction are observed on the surface of the Si substrate in the as-grown film. The impact of silicide formation on the electrical properties is revealed by capacitance-voltage (C-V) measurements. By post-deposition annealing (PDA), silicide can be effectively eliminated and C-V property is obviously improved.  相似文献   

11.
The reduction of complementary metal oxide semiconductor dimensions through transistor scaling is in part limited by the SiO2 dielectric layer thickness. Among the materials evaluated as alternative gate dielectrics one of the leading candidate is La2O3 due to its high permittivity and thermodynamic stability. However, during device processing, thermal annealing can promote deleterious interactions between the silicon substrate and the high-k dielectric degrading the desired oxide insulating properties.The possibility to grow poly-SiGe on top of La2O3//Si by laser assisted techniques therefore seems to be very attractive. Low thermal budget techniques such as pulsed laser deposition and crystallization can be a good choice to reduce possible interface modifications due to their localized and limited thermal effect.In this work the laser annealing by ArF excimer laser irradiation of amorphous SiGe grown on La2O3//Si has been analysed theoretically by a numerical model based on the heat conduction differential equation with the aim to control possible modifications at the La2O3//Si interface. Simulations have been carried out using different laser energy densities (0.26-0.58 J/cm2), different La2O3 film thickness (5-20 nm) and a 50 nm, 30 nm thick amorphous SiGe layer. The temperature distributions have been studied in both the two films and substrate, the melting depth and interfaces temperature have been evaluated. The fluences ranges for which the interfaces start to melt have been calculated for the different configurations.Thermal profiles and interfaces melting point have shown to be sensitive to the thickness of the La2O3 film, the thicker the film the lower the temperature at Si interface.Good agreement between theoretical and preliminary experimental data has been found.According to our results the oxide degradation is not expected during the laser crystallization of amorphous Si0.7Ge0.3 for the examined ranges of film thickness and fluences.  相似文献   

12.
W, Al2O3 and Ti films were deposited onto a Cu substrate by means of the rf magnetron sputtering method. After deposition, the foils were annealed at various temperatures in vacuum and the interfaces of the films were observed by a field-emission transmission electron microscopy (FE-TEM), after preparing a cross-sectional thin foil using a focused ion beam (FIB) machine. After annealing the foil at 473 and 623 K, no reaction phases were identified at each interface of W/Al2O3, Al2O3/Ti and Ti/Cu-substrate. However, from the results of compositional analysis at the interface of Al2O3/Ti bilayer, after heat-treatment at 623 K, the formation of an oxide layer was suggested even though it was not clearly observed. On the other hand, after heat-treatment at 823 K, the formation of CuTi2, Cu3Ti2 and Cu4Ti phases were identified at the interface of Ti/Cu bilayers from the compositional analysis of reaction layers after heat-treatment at different temperatures, and the diffusion coefficients and activation energies in the phases were evaluated. In this paper, the influence of heat-treatment on the interfacial behavior of multilayer are discussed on the basis of nanoscale analysis by EDS and HRTEM images.  相似文献   

13.
Thermal stability, interfacial structures and electrical properties of amorphous (La2O3)0.5(SiO2)0.5 (LSO) films deposited by using pulsed laser deposition (PLD) on Si (1 0 0) and NH3 nitrided Si (1 0 0) substrates were comparatively investigated. The LSO films keep the amorphous state up to a high annealing temperature of 900 °C. HRTEM observations and XPS analyses showed that the surface nitridation of silicon wafer using NH3 can result in the formation of the passivation layer, which effectively suppresses the excessive growth of the interfacial layer between LSO film and silicon wafer after high-temperature annealing process. The Pt/LSO/nitrided Si capacitors annealed at high temperature exhibit smaller CET and EOT, a less flatband voltage shift, a negligible hysteresis loop, a smaller equivalent dielectric charge density, and a much lower gate leakage current density as compared with that of the Pt/LSO/Si capacitors without Si surface nitridation.  相似文献   

14.
The electrical characteristics of polycrystalline Si (poly Si) layers embedded into high-k Al2O3 (alumina) gate layers are investigated in this work. The capacitance versus voltage (C-V) curves obtained from the metal-alumina-polysilicon-alumina-silicon (MASAS) capacitors exhibit significant threshold voltage shifts, and the width of their hysteresis window is dependent on the range of the voltage sweep. The counterclockwise hysteresis observed in the C-V curves indicates that electrons originating from the p-type Si substrate in the inversion condition are trapped in the floating gate layer consisting of the poly Si layer present between the top and bottom Al2O3 layers in the MASAS capacitor. Also, current versus voltage (I-V) measurements are performed to examine the electrical characteristics of the fabricated capacitors. The I-V measurements reveal that our MASAS capacitors show a very low leakage current density, compared to the previously reported results.  相似文献   

15.
In this paper, we report the observation of intrinsic room temperature ferromagnetism in pure La2O3 nanoparticles. Magnetism measurement indicates that all of the samples exhibit room temperature ferromagnetism and the saturation magnetization for the samples decreases with the increase in annealing temperature from 700 to 1,000 °C. X-ray photoelectron spectroscopy identifies the presence of oxygen vacancies in the La2O3 nanoparticles. The fitting results of the O 1s spectrum indicate that the variation of the oxygen vacancy concentration is in complete agreement with the change of the saturation magnetization. It is also found that the saturation magnetization of the La2O3 nanoparticles can be tuned by post-annealing in argon or oxygen atmosphere. These results suggest that the oxygen vacancies are largely responsible for the room temperature ferromagnetism in pure La2O3 nanoparticles.  相似文献   

16.
We investigate the effect of O3 and H2O oxidant pre‐pulse prior to Al2O3 atomic layer deposition for Si surface passivation. Interfacial oxide SiOx formed by the O3 pre‐pulse is more beneficial than that by H2O to a high level of surface passivation. The passivation of thinner H2O–Al2O3 films is more improved by this O3 pre‐pulse. O3 pre‐pulse for 10 nm H2O–Al2O3 reduces saturation current density in boron emitter to 18 fA cm–2 by a factor of 1.7. Capacitance–voltage measurements reveal this interfacial oxide plays a role of decreasing interface trap density without detrimental effect to negative charge density of Al2O3. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

17.
The uniform and dense Al2O3 and Al2O3/Al coatings were deposited on an orthorhombic Ti2AlNb alloy by filtered arc ion plating. The interfacial reactions of the Al2O3/Ti2AlNb and Al2O3/Al/Ti2AlNb specimens after vacuum annealing at 750 °C were studied. In the Al2O3/Ti2AlNb specimens, the Al2O3 coating decomposed significantly due to reaction between the Al2O3 coating and the O-Ti2AlNb substrate. In the Al2O3/Al/Ti2AlNb specimens, a γ-TiAl layer and an Nb-rich zone came into being by interdiffusion between the Al layer and the O-Ti2AlNb substrate. The γ-TiAl layer is chemically compatible with Al2O3, with no decomposition of Al2O3 being detected. No internal oxidation or oxygen and nitrogen dissolution zone was observed in the O-Ti2AlNb alloy. The Al2O3/Al/Ti2AlNb specimens exhibited excellent oxidation resistance at 750 °C.  相似文献   

18.
High-k dielectric LaAlO3 (LAO) films on Si(100) were studied by TOF-SIMS and XPS to look for diffusion processes during deposition and additional thermal treatment and for the formation and composition of possible interfacial layers. The measurements reveal the existence of SiO2 at the LAO/Si interface. Thermal treatment strengthens this effect indicating a segregation of Si. However, thin LAO layers show no interfacial SiO2 but the formation of a La-Al-Si-O compound. In addition, Pt diffusion from the top coating into the LAO layers occurs. Within the LAO layer C is the most abundant contamination (1021 at/cm3). Its relatively high concentration could influence electric characteristics. XPS shows that CO32− is intrinsic to the LAO layer and is due to the adsorption of CO2 of the residual gas in the deposition chamber.  相似文献   

19.
This paper describes the heavy ion-induced effects on the electrical characteristics of reactively sputtered ZrO2 and Al2O3 high-k gate oxides deposited in argon plus nitrogen containing plasma. Radiation-induced degradation of sputtered high-k dielectric ZrO2/Si and Al2O3/Si interface was studied using 45?MeV Li3+ ions. The devices were irradiated with Li3+ ions at various fluences ranging from 5?×?109 to 5?×?1012?ions/cm2. Capacitance–voltage and current–voltage characteristics were used for electrical characterization. Shift in flat band voltage towards negative value was observed in devices after exposure to ion radiation. Post-deposition annealing effect on the electrical behavior of high-k/Si interface was also investigated. The annealed devices showed better electrical and reliability characteristics. Different device parameters such as flat band voltage, leakage current, interface defect density and oxide-trapped charge have been extracted.The surface morphology and roughness values for films deposited in nitrogen containing plasma before and after ion radiation are extracted from Atomic Force Microscopy.  相似文献   

20.
L. Shi 《Applied Surface Science》2007,253(7):3731-3735
As a potential gate dielectric material, the La2O3 doped SiO2 (LSO, the mole ratio is about 1:5) films were fabricated on n-Si (0 0 1) substrates by using pulsed laser deposition technique. By virtue of several measurements, the microstructure and electrical properties of the LSO films were characterized. The LSO films keep the amorphous state up to a high annealing temperature of 800 °C. From HRTEM and XPS results, these La atoms of the LSO films do not react with silicon substrate to form any La-compound at interfacial layer. However, these O atoms of the LSO films diffuse from the film toward the silicon substrate so as to form a SiO2 interfacial layer. The thickness of SiO2 layer is only about two atomic layers. A possible explanation for interfacial reaction has been proposed. The scanning electron microscope image shows the surface of the amorphous LSO film very flat. The LSO film shows a dielectric constant of 12.8 at 1 MHz. For the LSO film with thickness of 3 nm, a small equivalent oxide thickness of 1.2 nm is obtained. The leakage current density of the LSO film is 1.54 × 10−4 A/cm2 at a gate bias voltage of 1 V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号