首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
N-羧基吡啶功能化离子液体的表征   总被引:3,自引:0,他引:3  
合成了系列新型N-羧基吡啶功能化离子液体, 利用1H NMR、13C NMR、IR、DSC对其进行表征并研究了其与常规溶剂的相溶性, 采用酸碱滴定法测量了系列离子液体的酸离解常数pKa值. N-羧基取代吡啶功能化离子液体的pKa值在2.5~4.0之间, 并随阳离子取代羧基碳链的增长而增大; 离子之间形成氢键及阴、阳离子的大小是影响离子液体熔点的主要因素. 阴离子越小, 熔点越高. 所合成的N-羧基吡啶功能化离子液体具有相同的相溶性且由取代羧基所决定, 与常见烷基咪唑离子液体相比, N-羧基吡啶功能化离子液体与丙酮、二氯甲烷并不相溶. 功能化离子液体的阳离子取代基是影响其物化性能的主要因素, 通过改变功能化基团碳链的长短及与不同阴离子进行组合, 可以对功能化离子液体物理、化学性能进行调节.  相似文献   

2.
边敏  杨勇  周昊 《分析测试学报》2013,32(2):174-178
建立了以离子液体1-丁基-3-甲基咪唑四氟硼酸盐(BmimBF4)为流动相添加剂分离辣椒素类生物碱的方法及分离模型,探讨了其作用机理。考察了添加剂离子液体的种类、浓度、烷基链长度、柱温等因素的影响。结果显示以离液序列较高的阴离子离子液体作为置换剂,可明显改善此类生物碱的分析效果。离子液体的链长、浓度与组分保留因子的变化符合溶质计量置换保留模型(SDM-R),r>0.99,即分离作用过程完全符合溶质计量置换模型。  相似文献   

3.
杨艳霞  岳艳  蒋新宇 《化学通报》2012,(10):914-919
本文基于配体交换的机理,研究了以脯氨酸手性离子液体作为手性配体拆分扁桃酸(MA)对映体的方法及热力学过程。详细考察了手性离子液体的烷基链长、铜离子的浓度、离子液体的浓度和pH等因素对MA对映体分离的影响。研究发现,不同烷基链长的手性离子液体中,以1-丁基-3-甲基咪唑L-脯氨酸为配体时,MA对映体的拆分效果最好;随着铜离子浓度的增加,MA对映体的保留时间和分离度先增大再减小;而随着1-丁基-3-甲基咪唑L-脯氨酸离子液体的浓度和流动相pH的增大,保留时间和分离度均增大。本文还测定了拆分过程中的一些热力学参数,结果表明,MA对映体的拆分过程是一个焓控的过程,L-MA较D-MA与固定相有更强的相互作用,保留时间更长。  相似文献   

4.
对阴离子性化合物在强阴离子交换毛细管电色谱中的保留行为进行了研究。发现样品中固定相上的吸附使样品的保留因子k^*变小,柱小的分离能力减小;而电压的增大,使酸性样品的k^*也增大,并且电压的改变也能改变分离的选择性;样品保留因子的对数值随着缓冲液离子强度的对数值的增大而线性减小;样品也强阴子交换毛细管电谱和毛细管区带电泳中有不同的保留行为。  相似文献   

5.
田玲  姚成  边敏 《分析测试学报》2016,35(11):1471-1475
以常用流动相添加剂三乙胺作为对照,建立了以离子液体为流动相添加剂,分离钩藤药材中钩藤碱和异钩藤碱的高效液相色谱方法。以分离度及相关色谱参数为指标,选择了离子液体中咪唑阳离子烷基链长度及阴离子的种类。并分别考察了咪唑阳离子烷基链长度、离子液体浓度、流动相pH值和流动相比例对钩藤碱和异钩藤碱分离的影响,初步探讨了离子液体的分离机理。结果显示,咪唑阳离子的烷基链越长,阴离子的离子液体序列越高,分离效果越好,即[HMIM][BF_4]为最优的流动相添加剂。当[HMIM][BF_4]浓度为16 mmol/L,流动相pH值为3.0,甲醇比例为37%时,钩藤碱和异钩藤碱能够实现基线分离,满足样品分离测定的需求。  相似文献   

6.
陈旭伟  李亚  魏玲  王建华 《分析化学》2015,43(4):465-470
考察了对称型卤代咪唑基离子液体咪唑环上的烷基链长度和不同卤素阴离子(Cl-,Br-,I-)对其光谱性能的影响.实验结果表明,随离子液体咪唑环中烷基链长度增加,离子液体的荧光强度增大;随离子液体中卤素阴离子的电负性降低,其荧光强度减弱.加入血红蛋白可导致咪唑型离子液体的荧光强度增强,且在一定范围内与蛋白质浓度成正比,据此可对血红蛋白进行定量检测,线性范围为0.03 ~ 1.0 μmol/L,检出限为8 nmol/L.另外,根据不同蛋白质对咪唑基离子液体荧光性能的影响,建立了阵列传感系统用于8种蛋白质的区分与识别,在蛋白质浓度高于500 nmol/L时,识别正确率达到90%以上.  相似文献   

7.
无机阴离子的紫外光度检测-离子色谱法测定   总被引:3,自引:0,他引:3  
袁建平 《色谱》1996,14(3):208-210
 选用四硼酸钠及对紫外光有较强吸收的邻苯二甲酸作为流动相的主要成分,用以洗脱和分离无机阴离子。采用间接光度法检测分离后的各种无机阴离子。考察了流动相中四硼酸钠浓度对各离子保留时间的影响。  相似文献   

8.
建立了以离子液体1-辛基-甲基咪唑六氟磷酸盐(Omin PF6)为高效液相色谱流动相添加剂分离莨菪类生物碱的方法,探讨了离子液体的保留模型及机理。采用高效液相色谱法,考察了检测波长、有机相种类和比例、离子液体的种类、p H值和浓度、缓冲盐体系等因素对莨菪类生物碱色谱行为的影响。结果显示,当离子液体作为流动相添加剂时,可明显改善此类生物碱的分离效果,减少色谱峰的拖尾,提高分离效率。研究显示,Omin PF6浓度与容量因子的变化符合溶质计量置换保留模型(SDM-R),且保留过程以竞争吸附为主。  相似文献   

9.
以表阿霉素及其6种相关物质为研究对象,系统评价了其在反相离子对色谱模式下的色谱行为.分别考察了流动相中有机相种类、有机相比例、水相中离子对试剂浓度、pH值对表阿霉素及其相关物质的影响.结果表明,使用乙腈作为有机相洗脱能力及分离效果优于甲醇,保留时间随乙腈比例增大而减小;随着离子对试剂十二烷基硫酸钠浓度增加,杂质阿霉素酮及柔红霉酮几乎无影响,其他5种物质保留时间增加.同时,表阿霉素及其杂质的保留行为受流动相pH值影响较大,当pH不高于4时可获得较好的分离效果.通过对表阿霉素及其相关物质反相离子对模式下的保留行为进行了系统的评价和定量描述,研究结果将有助于该类化合物液相色谱分离方法的发展.  相似文献   

10.
选用四硼酸钠及对紫外光有较强吸收的邻苯二甲酸作为流动相的主要成分,用以洗脱和分离无机阴离子。采用间接光度法检测分离后的各种无机阴离子。考察了流动相中四硼酸钠浓度对各离子保留时间的影响。  相似文献   

11.
Chao Guan  Hong Yu 《中国化学快报》2015,26(11):1371-1375
A method of hydrophilic interaction liquid chromatography with indirect ultraviolet detection was developed to determine three pyrrolidinium ionic liquid cations, i.e. N-methyl-N-ethyl pyrrolidinium cation ([MEPy]+), N-methyl-N-propyl pyrrolidinium cation ([MPPy]+) and N-methyl-N-butyl pyrrolidinium cation ([MBPy]+). Chromatographic separation was achieved on a hydrophilic column using imidazolium ionic liquids and organic solvents as the mobile phase. The effects of the background ultraviolet absorption reagents, the imidazolium ionic liquids, detection wavelength, organic solvents, column temperature and the pH value of the mobile phase on the separation and determination of pyrrolidinium cations were investigated and the retention behaviors in hydrophilic interaction chromatography were discussed. The optimized chromatographic conditions were selected. Under the optimal conditions, the detection limits (S/N = 3) for [MEPy]+, [MPPy]+ and [MBPy]+ were 0.59, 0.53 and 0.46 mg/L, respectively. The method has been successfully applied to the determination of the three ionic liquids synthesized in our chemistry laboratory. This research results may improve the analytical method of ionic liquid cations.  相似文献   

12.
Ionic liquids have been functionalized for modern applications. The functional ionic liquids are also called task‐specific ionic liquids. Various task‐specific ionic liquids with certain groups have been constructed and exploited widely in the field of separation. To take advantage of their properties in separation science, task‐specific ionic liquids are generally used in techniques such as liquid–liquid extraction, solid‐phase extraction, gas chromatography, high‐performance liquid chromatography, and capillary electrophoresis. This review mainly covers original research papers published in the last five years, and we will focus on task‐specific ionic liquids as the chiral selectors in chiral resolution and as extractant or sensor for biological samples and metal ion purification.  相似文献   

13.
As novel solvents, ionic liquids have many applications in synthesis, catalysis and analytical separation, i.e. extraction and chromatography separation. In this paper, some amines including benzidine, benzylamine, N-ethylaniline and N,N′-dimethylaniline are separated using ionic liquids as additives for the mobile phase in high performance liquid chromatography (HPLC). The effects of the length of alkyl chain or counterions on different ionic liquids and their concentrations on the separation of these analytes are performed. The differences between ionic liquids and tetrabutylammonium bromide (TBA) on the separation of o-, m-, p-phthalic acids are compared and the results show that ionic liquids are ion-pair reagents in essence, although their hydrophobicity and hydrogen bonding also play important roles.  相似文献   

14.
As an organic salt, ionic liquids are widely used as new solvent media. In this paper, three positional isomers, such as o-amino benzoic acid, m-amino benzoic acid, and p-amino benzoic acid are separated with four different ionic liquids as additives to the mobile phase using reversed-phase (RP) high-performance liquid chromatography (HPLC). Amino benzoic acids are biologically active substances; the p-isomer is present in a group of water-soluble vitamins and is widely known as a sunscreen agent. The ionic liquids used are 1-butyl-3-methylimidazolium tetrafluoroborate, 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-ethyl-3-methylimidazolium methylsulfate, and 1-octyl-3-methylimidazolium methylsulfate. The effects of the length of the alkyl group on the imidazolium ring and its counterion, the concentrations of the ionic liquid, and the effect of the pH of the mobile phase on the retention factor of the amino benzoic acid isomers are studied. Separation with the ionic liquid in the eluent was better than the separation without the ionic liquid. The pH mainly affected the retention and elution order of the solutes in RP-HPLC.  相似文献   

15.
A new series [CnOmmim]Cl of imidazolium cation-based ionic liquids (ILs), with an ether functional group on the alkyl side-chain, has been prepared. The possibility of analyzing the ionic liquids by high performance liquid chromatography (HPLC) was investigated on mixed-mode reversed/cation exchange stationary phase with the aqueous-acetonitrile mobile phase. Elution parameters, such as retention factor, selectivity and column efficiency, were studied as functions of mobile phase composition and pH. The ILs were characterized by elemental analysis, and infrared, UV and 1H, 13C NMR spectroscopy.  相似文献   

16.
《Analytica chimica acta》2005,547(2):172-178
A suppression of silanophilic interactions by the selected ionic liquids added to the mobile phase in thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC) is reported. Acetonitrile was used as the eluent, alone or with various concentrations of water and phosphoric buffer pH 3. Selectivity of the normal (NP) and the reversed (RP) stationary phase material was examined using a series of proton-acceptor basic drugs analytes. The ionic liquids studied appeared to significantly affect analyte retention in NP-TLC, RP-TLC and RP-HPLC systems tested. Consequently, the increased separation selectivity was attained. Due to ionic liquid additives to eluent even analytes could be chromatographed, which were not eluted from the silica-based stationary phase materials with 100% of acetonitrile in the mobile phase. Addition of ionic liquid already in very small concentration (0.5%, v/v) could reduce the amount of acetonitrile used during the optimization of basic analytes separations in TLC and HPLC systems. Moreover, the influence of temperature on the separation of basic analytes was demonstrated and considered in practical HPLC method development.  相似文献   

17.
In recent years, ionic liquids have become increasingly attractive as ‘green solvents’ used in the extraction of bioactive compounds from natural plant. However, the separation of ionic liquid from the target compounds was difficult, due to their low vapour pressure and high stabilities. In our study, ionic liquid‐based ultrasonic and microwave‐assisted extraction was used to obtain the crude tannins, then the macroporous resin adsorption technology was further employed to purify the tannins and remove the ionic liquid from crude extract. The results showed that XDA‐6 had higher separation efficiency than other tested resins, and the equilibrium experimental data were well fitted to Langmuir isotherms. Dynamic adsorption and desorption were performed on XDA‐6 packed in glass columns to optimise the separation process. The optimum conditions as follows: the ratio of column height to diameter bed was 1:8, flow rate 1 BV/h (bed volume per hour), 85% ethanol was used as eluant while the elution volume was 2 BV. Under the optimised conditions, the adsorption and desoption rate of tannins in XDA‐6 were 94.81 and 91.63%, respectively. The content of tannins was increased from 70.24% in Galla chinensis extract to 85.12% with a recovery of 99.06%. The result of ultra‐performance liquid chromatography (UPLC)‐MS/MS analysis showed that [bmim]Br could be removed from extract.  相似文献   

18.
Macleaya cordata (Willd) R. Br. is a medicinal plant. The most important bioactive compounds of M. cordata are alkaloids that have many biological activities including antifungal, anti‐inflammatory, and antitumor. In this study, an ionic‐liquid‐modified high‐speed counter‐current chromatography method was established to obtain alkaloids from the fruits of M. cordata. The conditions of ionic‐liquid‐modified high‐speed counter‐current chromatography, including solvent systems, the content of ionic liquid (1‐butyl‐3‐methylimidazolium tetrafluoroborate [C4mim][BF4]), and the posttreatment of the ionic liquid, were investigated. Five alkaloids protopine, allocryptopine, sanguinarine, 8‐O‐demethylchelerythrine, and chelerythrine were separated from the extract of the fruits using a high speed counter‐current chromatography with two‐phase solvent system composed of dichloromethane/methanol/0.3 mol/L hydrochloric acid aqueous solution/[C4mim][BF4] (4:2:2:0.015, v/v). Their purities were 96.33, 95.56, 97.94, 96.22, and 97.90%, respectively. The results indicated that a small amount of ionic liquids as modifier of the two‐phase solvent system could shorten the separation time and improve the separation efficiency of the alkaloids from the fruits. The ionic‐liquid‐modified high‐speed counter‐current chromatography would provide a feasible way for highly effective separation of alkaloids from natural products.  相似文献   

19.
Tocopherol homologues are important fat‐soluble bioactive compounds with high nutritional value. However, it is of great challenge to separate these homologues because of their high structural similarities. In this work, ionic‐liquid‐based countercurrent chromatography was used for the separation and purification of tocopherol homologues. Conventional countercurrent chromatography and ionic‐liquid‐based countercurrent chromatography solvent systems were evaluated in respect of partition coefficient, separation factor, and stationary phase retention factor to separate these targets. Kind of ionic liquids, amount of ionic liquid, and sample amount were systematically optimized. A novel countercurrent chromatography non‐aqueous biphasic system composed of n‐hexane‐methanol‐1‐butyl‐3‐methylimidazolium chloride was established. The baseline separation of tocopherol mixtures was obtained in one cycle process. The ionic liquid played a key role in the countercurrent chromatography separation, which resulted in difference of partition behavior of individual tocopherol in the whole system through different hydrogen‐bonding affinity. Finally, n‐hexane‐methanol‐1‐butyl‐3‐methylimidazolium chloride (5:5:3, v/v) water‐free biphasic system was successfully applied to separate tocopherol homologues from vegetable oil that was not achieved beforehand. This method can be widely employed to separate many similar molecules such as tocotrienols, tocomonoenols, and marine‐derived tocopherol in food samples.  相似文献   

20.
The addition of an ionic liquid into the mobile phase appeared to be useful in optimization of chromatographic separation of peptides. Different behavior of peptides in thin-layer chromatography (TLC) was observed after addition of 1-ethyl-3-methylimidazolium tetra fluoroborate to the eluent in comparison to the system without the ionic liquid. Nonlinear dependence of the retention coefficient, R(M), of peptides on the volume percentage of acetonitrile in the eluent was found in normal-phase TLC with and without immidazolium tetra fluoroborate in the mobile phase. In general, R(M) increased with increasing concentration of acetonitrile. In TLC systems without the ionic liquid, R(M) can be described well with a quadratic function. On the other hand, in a TLC system with an ionic liquid as the additive to the mobile phase, the retention behavior is better described with a third-degree polynomial function. The potential usefulness of ionic liquids for optimization of separation of peptides was demonstrated. Optimization of the separation conditions was supported by a commercially available computer program.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号