首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
阮萍  熊仁生 《光子学报》1997,26(6):569-572
弹道相机通常是在夜间对飞行目标进行拍摄,在相机类型不改变的情况下要达到白天工作能力具有一定困难,主要障碍是拍摄后,底板上目标与背景的衬比(度)下降,难以达到判读要求.针对这一问题,本文详细叙述了各因素对判读要求的影响,提出了改善相机白天工作能力的可行方法.  相似文献   

2.
Electron transport in nanoscale semiconductor structures is theoretically investigated to answer the question of whether or not the ballistic limit is really attainable under room temperature operation. The semiclassical Boltzmann transport equation is solved analytically under the relaxation time approximation for n(+)-n-n(+) test structures. We demonstrate that the solution of the Boltzmann transport equation exhibits a boundary layer structure near the potential barrier and thus the scatterings in the active region cannot be neglected even in nanoscale structures, as far as they are operated at room temperature under high applied voltages.  相似文献   

3.
A mechanism for achieving the terahertz negative conductivity on transmit time effects during ballistic transport of hot carriers in nanoscale semiconductor heterostructures was theoretically considered. It was shown that selection of the heterostructure potential profile can significantly increase high-frequency negative conductivity.  相似文献   

4.
It is investigated the possibility of controlling the electric flow through a ferromagnet–superconductor junction by spin polarization, within a simple, ideal model of a perfect ferromagnetic–superconductor junction. The ferromagnetic and superconducting properties as well as the Andreev reflection are briefly reviewed and the electrical resistance of the junction is computed both in the diffusive and ballistic regime for the ferromagnetic sample. It is shown that the resistance of the junction increases with increasing magnetization, including both positive or negative jumps on passing from the ballistic to the diffusive regime.  相似文献   

5.
Inspired by the problem of elastic wave scattering on wrinkled interfaces, we studied the scattering of ballistic electrons on a wrinkled potential energy region. The electron transmission coefficient depends on both wrinkle amplitude and periodicity, having different behaviors for positive and negative scattering potential energies. For scattering on potential barriers, minibands appear in the electron transmission, as in superlattices, whereas for scattering on periodic potential wells the transmission coefficient has a more complex form. Besides suggesting that tuning of electron transmission is possible by modifying the scattering potential via voltages on wrinkled gate electrodes, our results emphasize the analogies between ballistic electrons and elastic waves even in scattering problems on non-typical configurations.  相似文献   

6.
We consider a ballistic field-effect transistor with channel current carriers having a negative effective mass section in their dispersion relation. Such a device is suggested as an effective generator of terahertz-range oscillations. A gate potential controls the generator regime (including oscillation frequency, amplitude, turning on and off).  相似文献   

7.
This paper reports on a study of the emission of ballistic photoelectrons from p-GaN(Cs,O) with an effective negative electron affinity. At photon energies less than the GaN band gap width, where emission of electrons originates from photoexcitation of surface and near-surface states, an increment in the energy of ballistic electrons is equal to that of exciting photons, which is substantiated by the dispersionless character of the initial states. At photon energies exceeding the band gap width, the excess energy of light is partitioned among the kinetic energies of ballistic photoelectrons and holes in accordance with their effective masses. This relation was used to determine the effective hole mass along the c axis of the GaN lattice of the wurtzite structure, which turned out to be m* h = (0.60 ± 0.15)m 0.  相似文献   

8.
The current–voltage characteristics of ballistic Nb-InGaAs/InP-Nb Josephson junctions have been investigated. At temperatures below 1 K a negative differential conductance, which usually leads to a hysteresis in the current–voltage characteristics, was resolved by connecting an additional external shunt resistor to the junction. The negative differential conductance is explained by heating and conductance enhancement due to multiple Andreev reflections. The structures observed in the differential resistance measurements as a function of the bias voltage are explained by self-detection of Josephson radiation at low bias voltages and subharmonic gap structures at higher bias voltages.  相似文献   

9.
Threading dislocations (TDs) of molecular beam epitaxy grown GaN film were studied with ultrahigh vacuum ballistic electron emission microscopy in order to quantify any fixed negative charge at identifiable TDs, with approximately 3 nm spatial and approximately 10 meV local barrier resolution. In contrast to several prior studies, we find no indication of fixed negative dislocation charge at specific TD structures, with a conservative upper limit of approximately 0.25 e(-) per c-axis unit cell. We do observe evidence of positive surface charge at TDs and at GaN step edges, which may be due to local piezoelectric fields.  相似文献   

10.
徐慧  宋祎璞 《中国物理》2002,11(12):1294-1299
In this paper, we establish a one-dimensional random nanocrystalline chain model, we derive a new formula of ac electron-phonon-field conductance for electron tunnelling transfer in one-dimensional nanometre systems. By calculating the ac conductivity, the relationship between the electric field, temperature and conductivity is analysed, and the effect of crystalline grain size and distortion of interfacial atoms on the ac conductance is discussed. A characteristic of negative differential dependence of resistance and temperature in the low-temperature region for a nanometre system is found. The ac conductivity increases linearly with rising frequency of the electric field, and it tends to increase as the crystalline grain size increases and to decrease as the distorted degree of interfacial atoms increases.  相似文献   

11.
Electronic transport in ferromagnetic ballistic conductors is predicted to exhibit ballistic anisotropic magnetoresistance-a change in the ballistic conductance with the direction of magnetization. This phenomenon originates from the effect of the spin-orbit interaction on the electronic band structure which leads to a change in the number of bands crossing the Fermi energy when the magnetization direction changes. We illustrate the significance of this phenomenon by performing ab initio calculations of the ballistic conductance in ferromagnetic Ni and Fe nanowires which display a sizable ballistic anisotropic magnetoresistance when magnetization changes direction from parallel to perpendicular to the wire axis.  相似文献   

12.
The results of an experimental study of quantum correction of electron-electron interaction (EEI) to the conductivity of two-dimensional electron gas (2DEG) in an undoped heterostructure are reported. A small but significant decrease of the Hall slope with the increase of temperature was discovered. This is not due to the increase of electron concentration as temperature increases but to the EEI effect. Both diffusion and ballistic contributions of EEI to the conductivity of 2DEG were observed. As the temperature increases, the negative diffusion EEI correction to the conductivity increases in an absolute value while the ballistic EEI correction reduces to a renormalization of the transport mobility.  相似文献   

13.
It is found that there exists a category of material interfaces, readily available, that not only can provide total refraction (i.e., zero reflection) but can also give rise to amphoteric refraction (i.e., both positive and negative refraction) for electromagnetic waves in any frequency domain as well as for ballistic electron waves. These two unusual phenomena are demonstrated experimentally for the propagation of light through such an interface.  相似文献   

14.
The time-dependent Ginzburg–Landau formalism is applied to analyze the vortex states and vortex dynamics in superconducting spherical nanoshells, subjected to mutually perpendicular strong dc and weak ac magnetic fields. We demonstrate that nonuniformity of the shell thickness can dramatically affect the ac magnetic response of a 3D array of superconducting nanoshells. Remarkably, this response is strongly influenced not only by the relevant geometric and material parameters and the ac-field frequency but also by the magnitude of the applied dc field: by changing this field the real part of the effective ac magnetic permeability can be tuned from positive values significantly larger than one down to negative values.  相似文献   

15.
We consider a high-frequency response of electrons in a single miniband of superlattice subject to dc and ac electric fields. We show that Bragg reflections in miniband result in a parametric resonance which is detectable using ac probe field. We establish theoretical feasibility of phase-sensitive THz amplification at the resonance. The parametric amplification does not require operation in conditions of negative differential conductance. This prevents a formation of destructive domains of high electric field inside the superlattice.  相似文献   

16.
An experimental realization of a ballistic superconductor proximitized semiconductor nanowire device is a necessary step towards engineering topological quantum electronics. Here, we report on ballistic transport in In Sb nanowires grown by molecular-beam epitaxy contacted by superconductor electrodes. At an elevated temperature, clear conductance plateaus are observed at zero magnetic field and in agreement with calculations based on the Landauer formula. At lower temperature, we have observed characteristic Fabry–Pérot patterns which confirm the ballistic nature of charge transport.Furthermore, the magnetoconductance measurements in the ballistic regime reveal a periodic variation related to the Fabry–Pérot oscillations. The result can be reasonably explained by taking into account the impact of magnetic field on the phase of ballistic electron's wave function, which is further verified by our simulation. Our results pave the way for better understanding of the quantum interference effects on the transport properties of In Sb nanowires in the ballistic regime as well as developing of novel device for topological quantum computations.  相似文献   

17.
We predict that in quantum conductors the excess noise can be absent or even negative provided the energy dependence of the electron transmission probability at the Fermi energy is sufficiently sharp. In other words the current (or voltage) fluctuations under transport conditions can be less than in equilibrium. As examples for this surprising behavior we consider resonant tunneling, ballistic point contacts and the integer quantum Hall effect.Work performed within the research program of the Sonderforschungsbereich 341, Köln-Aachen-Jülich  相似文献   

18.
We present numerical calculations of the magnetoresistance in a ballistic quantum wire with periodically modulated width. Surprisingly, the negative magnetoresistance peak is found to persist to a field strength which is two orders of magnitude larger than in single quantum dots. In the weakB-field regime, our results are in good agreement with recent experiments. We argue that the wide peak is due to multiple backscattering among the segments of the wire, leading to a novel weak localization effect.  相似文献   

19.
The spin-valve complex magnetoimpedance of symmetric ferromagnet-normal-metal-ferromagnet junctions is investigated within the drift-diffusion (standard) model of spin injection. The ac magnetoresistance-the real part difference of the impedances of the parallel and antiparallel magnetization configurations-exhibits an overall damped oscillatory behavior, as an interplay of the diffusion and spin relaxation times. In wide junctions the ac magnetoresistance oscillates between positive and negative values, reflecting resonant amplification and depletion of the spin accumulation, while the line shape for thin tunnel junctions is predicted to be purely Lorentzian. The ac spin-valve effect could be a technique to extract spin transport and spin relaxation parameters in the absence of a magnetic field and for a fixed sample size.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号