首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rigorous analytical solution for the fluxes from a mixture of 1:1 metal complexes toward an active surface under steady-state planar diffusion in a finite domain and excess ligand conditions allows for the computation of the global degree of lability of the system as well as particular degrees of lability of each complex in the mixture. This kind of system is found in a variety of fields ranging from electrochemical techniques (such as stripping chronopotentiometry at scanned deposition potential, SSCP) to analytical devices (such as diffusion gradients in thin-film gels, DGT). Among the specific effects arising from the presence of a mixture of ligands competing for the metal we highlight the following: (i) The degree of lability of a complex in the mixture differs from its degree of lability in an unmixed system with the same ligand concentration, and (ii) the degree of lability of one complex depends on (i.e., can be modified with) the concentrations of the ligands in the mixture. The impact of these characteristics on the metal flux crossing the active surface reaches the highest value when both complexes are partially labile. The complex contribution to the metal flux goes through a maximum when the thickness of the diffusion domain is varied. Thus, the thickness of the diffusion domain can be chosen to enhance the contribution of one particular complex. Lability criteria for each complex of the mixture within the reaction layer approximation are also reported. In particular, the reaction layer formulation for a complex is discussed in detail for two limiting cases: the rest of complexes are all nonlabile or the rest of complexes are all labile.  相似文献   

2.
The impact of ligand protonation on the complexation kinetics of higher-order complexes is quantitatively described. The theory is formulated on the basis of the usual situation for metal complex formation in aqueous systems in which the exchange of water for the ligand in the inner coordination sphere is rate-determining (Eigen mechanism). We derive expressions for the general case of lability of ML(n) species that account for the contributions from all outer-sphere complexes to the rate of complex formation. For dynamic complexes, dissociation of ML is usually the rate-determining step in the overall process ML(n) --> M. Under such conditions, it is the role of ligand protonation in the step ML --> M that is relevant for the kinetic flux. 1:2 complexes of Cd(II) with pyridine-2,6-dicarboxylic acid fall into this category, and their lability at a microelectrode is reasonably well predicted by the differentiated approach. For non-dynamic systems, the kinetic flux arising from dissociation of higher-order complexes contributes to the rate-determining step. In this case, the weighted contribution of protonated and unprotonated outer-sphere complexes in all contributing dissociation reactions must be taken into account. The kinetic flux arising from the dissociation of 1:2 complexes of Ni(II) with bicine at a conventional electrode was quite well described by this combined approach. The results establish the generic role of ligand protonation within the overall framework of metal complexation kinetics in which complexes may be dynamic to an extent that depends on the operational time scale of the measurement technique.  相似文献   

3.
In complicated environmental or biological systems, the fluxes of chemical species at a consuming interface, like an organism or an analytical sensor, involve many coupled chemical and diffusion processes. Computation of such fluxes thus becomes difficult. The present paper describes an approximate approach, based on the so-called reaction layer concept, which enables one to obtain a simple analytical solution for the steady-state flux of a metal ion at a consuming interface, in the presence of many ligands, which are in excess with respect to the test metal ion. This model can be used for an unlimited number of ligands and complexes, without limit for the values of the association/dissociation rate constants or diffusion coefficients. This approximate solution is compared with a rigorous approach for the computation of the fluxes based on an extension of a previously published method (J. Galceran, J. Puy, J. Salvador, J. Cecília, F. Mas and J. L. Garcés, Phys. Chem. Chem. Phys., 2003, 5, 5091-5100). The comparison is performed for a very wide range of the key parameters: rate constants and diffusion coefficients, equilibrium constants and ligand concentrations. Their combined influence is studied in the whole domain of fully labile to non-labile complexes, via two combination parameters: the lability index, L, and the reaction layer thickness, mu. The results show that the approximate solution provides accurate results in most cases. However, for particular combinations of metal complexes with specific values of L or mu, significant differences between the approximate and rigorous solutions may occur. They are evaluated and discussed. These results are important for three reasons: (i) they enable the use of the approximate solution in a fully reliable manner, (ii) when present, the differences between approximate and rigorous solution are largely due to the coupling of chemical reactions, whose importance can thus be estimated, (iii) due to its simple mathematical expression, the individual contribution of each metal species to the overall flux can be computed.  相似文献   

4.
The impact of ligand protonation on metal speciation dynamics is quantitatively described. Starting from the usual situation for metal complex formation reactions in aqueous systems, i.e., exchange of water for the ligand in the inner coordination sphere as the rate-determining step (Eigen mechanism), expressions are derived for the lability of metal complexes with protonated and unprotonated ligand species being involved in formation of the precursor outer-sphere complex. A differentiated approach is developed whereby the contributions from all outer-sphere complexes are included in the rate of complex formation, to an extent weighted by their respective stabilities. The stability of the ion pair type outer-sphere complex is given particular attention, especially for the case of multidentate ligands containing several charged sites. It turns out that in such cases, the effective ligand charge can be considerably different from the formal charge. The lability of Cd(II) complexes with 1,2-diaminoethane-N,N'-diethanoic acid at a microelectrode is reasonably well predicted by the new approach.  相似文献   

5.
The lability of sequential metal complexes, ML, ML2, ML3, ... , up to a general 1:n metal/ligand stoichiometric ratio is considered for the case of metal ions (M) being accumulated at a surface (analytical sensor or organism). The analytical solution for the steady-state diffusion of M within a sequential complexation scheme allows quantification of the contribution from the dissociation of all of the complex species to the metal flux through the so-called lability degree, xi. A lability degree for each sequential complexation step is also defined which, due to the sequential character of the complexation scheme, depends not only on the proper kinetic constants of the given complexation step but also on the kinetics of the previous ones. When all contributions from the complexes are diffusion limited, the system is fully labile and xi=1. To provide simple lability criteria, the reaction layer approximation is extended to specifically deal with this sequential complexation scheme, so that a reaction layer thickness is defined when the existence of one particular rate-limiting step is assumed. Expressions for the classical lability parameter, L, are formulated using the reaction layer approximation. The change of the lability of the system as the diffusion layer thickness is modified is analyzed in detail. The contribution of the complex flux reflects the evolution of the system from labile to inert as the thickness of the sensor is appropriately decreased.  相似文献   

6.
The degree of lability of a given metal complex species is modified in the presence of a mixture of ligands. This modification is a consequence of the coupling of the association and dissociation processes of all of the complexes according to the competitive complexation reaction scheme. We show that, because of the mixture effect, the lability of a given complex usually increases when another more labile complex is added into the system, while it decreases upon addition of a less labile one. Typically, complexes tend to adapt to the global lability of the mixture. A quantitative evaluation of these effects for diffusion-limited conditions in a finite domain by rigorous numerical simulation in a system with two complexes indicates that the lability degree of a complex can change by more than 100% with respect to that in the single ligand system. The impact of the mixture effect on the metal flux depends at least on two main factors: the respective abundance of the metal species and the particular values of their lability degrees. Dominant complexes (i.e., those most abundant when these complexes have equal diffusion coefficients) undergo smaller changes in their own lability degree, but these changes have the greater impact on the overall metal flux. Partially labile complexes are more easily influenced by the mixture than labile or inert ones. Some mixture effects can be qualitatively predicted by an analytical expression for the lability index derived using the reaction layer approximation. For a mixture of many complexes, the change in the lability degree of a complex due to the mixture effect can be understood as a combination of the changes due to all of the complexes present.  相似文献   

7.
A self consistent procedure which uses the limiting currents of a titration experiment for the rigorous computation of the binding curve of the labile complexes formed with a metal and a heterogeneous ligand is presented. The homogeneous complexation model corresponding to the mean stability constant of all the affinity spectra is used as a first trial complexation model to compute the fractions of bound or free metal in bulk conditions along the titration. Afterwards, the binding curve so obtained is used in an iterative procedure to improve the computation of the fraction of free metal in bulk conditions at each metal-to-ligand ratio up to convergence. The resulting numerical process constitutes a rigorous way to obtain the binding curve. Its application to some cases with discrete or continuous affinity spectra is presented.  相似文献   

8.
Interactions between metals and catechol (1,2-dihydroxybenzene) or other ortho-dihydroxy moieties are being found in an increasing number of biological systems with functions ranging from metal ion internalization to biomaterial synthesis. Although metal-catecholate interactions have been studied in the past, we present the first systematic study of an array of these compounds, all prepared under identical conditions. We report the ultraviolet-visible absorption (UV-vis) spectra for catecholate and tironate complexes of the first row transition elements. Generation and identification of these species were accomplished by preparing aqueous solutions with varied ligand:metal ratios and subsequently titrating with base (NaOH). Controlled ligand deprotonation and metal binding resulted in sequential formation of complexes with one, two, and sometimes three catecholate or tironate ligands bound to a metal ion. We prepared the mono-, bis- and tris-catecholates and -tironates of Fe(3+), V(3+), V(4+)and Mn(3+), the mono- and bis-catecholates and -tironates of Cu(2+), Co(2+), Ni(2+), Zn(2+), Cr(2+) and Mn(2+), and several Ti(4+) and Cr(3+) species. The UV-vis spectra of each complex are described, some of which have not been reported previously. These data can now be applied to characterization of biological metal-catecholate systems.  相似文献   

9.
Metal toxicity is not related to the total metal ion concentration, but to those of some specific Cu(II) species. The Permeation Liquid Membrane technique is based on the carrier-mediated transport of the test metal across a hydrophobic membrane and enables discrimination between various trace metal species in solution. The present work shows how the labile and inert Cu(II) complexes can be determined selectively, by varying the flow-rate of the test solution, in a flow-through cell. A mathematical model of metal flux through the PLM, based on diffusion-limited transport under steady-state conditions, is described. The model and the performance of the technique were studied in well-defined synthetic solutions containing simple organic hydrophilic ligands forming either inert (nitrilotriacetic acid), or labile complexes with Cu(II) (tartaric acid, malonic acid). The results were compared with theoretical predictions of thermodynamic species distribution in solution. Uncertainties on stability constants for copper speciation calculation were taken into account. The detection limits of the device are discussed. This work demonstrates that the flow-through cell is a reliable tool for copper speciation measurements in natural waters.  相似文献   

10.
A large number of complexes of the first-row transition metals with non-innocent ligands has been characterized in the last few years. The localization of the oxidation site in such complexes can lead to discrepancies when electrons can be removed either from the metal center (leading to an M((n+1)+) closed-shell ligand) or from the ligand (leading to an M(n+) open-shell ligand). The influence of the ligand field on the oxidation site in square-planar nickel complexes of redox-active ligands is explored herein. The tetradentate ligands employed herein incorporate two di-tert-butylphenolate (pro-phenoxyl) moieties and one orthophenylenediamine spacer. The links between the spacer and both phenolates are either two imines ([Ni(L1)]), two amidates ([Ni(L3)]2-), or one amidate and one imine ([Ni(L2)]-). The structure of each nickel(II) complex is presented. In the noncoordinating solvent CH2Cl2, the one-electron-oxidized forms are ligand-radical species with a contribution from a singly occupied d orbital of the nickel. In the presence of an exogenous ligand, such as pyridine, a Ni(III) closed-shell ligand form is favored: axial ligation, which stabilizes the trivalent nickel in its octahedral geometry, induces an electron transfer from the metal(II) center to the radical ligand. The affinity of pyridine for the phenoxylnickel(II) species is correlated to the N-donor ability of the linkers.  相似文献   

11.
Cukrowska E  Cukrowski I 《Talanta》1998,47(5):2799-1189
The ligand monoaza-12-crown-4 ether (A12C4) was studied in aqueous solution at 298 K and an ionic strength of 0.5 mol dm−3 in the presence of an excess of sodium ion (0.5 mol dm−3 NaNO3). The protonation constant of A12C4, determined by glass electrode potentiometry (GEP) in the same background electrolyte, was found to be log K=9.36±0.03. Polarographic experimental and calculated complex formation curves (ECFC and CCFC) for labile metal–ligand systems, studied at a fixed total ligand (LT) to total metal (MT) concentration ratio and varied pH, were used for the modelling of the metal species formed and the refinement of their stability constants. The metal–ligand model and formation constants are optimised by solving mass-balance equations written for the assumed model and by fitting the CCFC to the ECFC. The CCFC can be generated for any metal–ligand model, including polynuclear metal species, for any LT:MT ratio, and for more than one ligand competing in the complex formation reaction. Three lead complexes with the ligand A12C4, viz. PbL2+, PbL(OH)+ and PbL(OH)2, were found and their overall stability constants from differential pulse polarography (DPP), as log β, were estimated to be 3.75±0.03, 9.30±0.05 and 12.70±0.05, respectively. Two copper complexes CuL2+ and CuL(OH)2 are reported and their stability constants (from DPP) were estimated to be 6.00±0.05 and 21.77±0.1, respectively. Two cadmium complexes CdL2+ and CdL(OH)+ are reported. The stability constant for CdL2+ was estimated from DPP and GEP as 2.80±0.05 and 2.68±0.03 (the latter value was obtained from a few potentiometric experimental points), respectively, and the stability constant for CdL(OH)+ from DPP was estimated to be 7.88±0.05. GEP could not be used for the stability constants determination of other metal complexes studied because of precipitation occurring prior the completion of a complex formation reaction.  相似文献   

12.
The study of the role of dynamic metal speciation in lipophilic membrane permeability in aqueous solution requires accurate interpretation of experimental data. To meet this goal, a general theory is derived for describing 1:1 metal complex flux, under steady-state and ligand excess conditions, through a permeation liquid membrane (PLM). The theory is applicable to fluxes through any lipophilic membrane. From this theory, fluxes in the three rate-limiting conditions for metal transport are readily derived, corresponding, namely, to (i) diffusion in the source solution, (ii) diffusion in the membrane, and (iii) the chemical kinetics of formation/dissociation of the metal complex in the interfacial reaction layer. The theory enables discussion of the reaction layer concept in a more general frame and also provides unambiguous criteria for the definition of an inert metal complex. The theoretical flux equations for fully labile complexes were validated in a previous paper. The general theory for semi- or nonlabile complexes is validated here by studying the flux of Pb(II) through PLMs in contact with solutions of Pb(II)-NTA and Pb(II)-TMDTA at different pHs and flow rates.  相似文献   

13.
The dynamics of metal sorption by a gel-like polysaccharide is investigated by means of the electrochemical technique of stripping chronopotentiometry (SCP). The measured response reflects the diffusive flux properties of the metallic species in the dispersion. The colloidal ligand studied here is a functionalized carboxymethyldextran. Its complexation with Pb(II) reveals a time dependence that identifies strong differences in the dynamic nature of the successive metal complexes formed. Apparently, the formation of intramolecular bidentate complexes requires a slow conformational reorganization of the macromolecule that becomes the rate-limiting step in the complexation reaction. The relevant parameters for metal binding and release kinetics are computed and thus provide knowledge of the time-dependent stability and lability of metal polysaccharide complexes.  相似文献   

14.
The potential of permeation liquid membrane (PLM) to obtain dynamic metal speciation information for colloidal complexes is evaluated by measurements of lead(II) and copper(II) complexation by carboxyl modified latex nanospheres of different radii (15, 35, 40 and 65 nm). The results are compared with those obtained by a well characterized technique: stripping chronopotentiometry at scanned deposition potential (SSCP). Under the PLM conditions employed, and for large particles or macromolecular ligands, membrane diffusion is the rate-limiting step. That is, the flux is proportional to the free metal ion concentration with only a small contribution from labile complexes. In the absence of ligand aggregation in the PLM channels, good agreement was obtained between the stability constants determined by PLM and SSCP for both metals.  相似文献   

15.
A new ditopic ligand, 4'-(4-(2,2,2-tris(1H-pyrazol-1-ido)ethoxymethyl)phenyl)-2,2':6',2'-terpyridine (pzt), has been prepared and its coordination chemistry studied. Metal ions with a preference for octahedral geometry form ML(2) complexes that are readily isolated and characterised, with the metal ion being bound to the terpyridine sites of both ligands. Other metal ions bind to the terpyridine site of just one ligand. In the case of silver(i), a dinuclear M(2)L(2) complex has been isolated in which each silver ion is coordinated to the terpyridine site of one ligand and to a single pyrazolyl donor group from the second ligand. Evidence for binding of metal ions to the tris(pyrazolyl) binding site was obtained by electrospray mass spectrometry and NMR techniques. The free ligand and three metal complexes, including the disilver complex, have been characterised by X-ray crystallographic techniques.  相似文献   

16.
《Analytical letters》2012,45(7):1224-1241
The combined use of a competing ligand exchange (CLE) method and a diffusive gradient in thin films (DGT) technique in a quasi-labile system provides a better understanding of dynamic metal (Cu and Ni) complexes in the presence of humic substances of different origins. The CLE and DGT techniques provide total labile (dynamic) metal complexes (Cu and Ni) and their dissociation rate constants in environmental systems. DGT was found to estimate lower concentrations of labile metal complexes than CLE. These discrepancies were caused by diffusion controlled metal flux (towards the binding resin gel) in the diffusive gel of DGT. The interactions of Cu and Ni with humic acids are stronger than their interactions with fulvic acid and natural organic matter. Changes in the lability of Ni and Cu complexes (complexed with humic substances of different origins) with the changing analytical detection window indicate that the complexes of these metals were formed with different binding sites with diverse binding energies in the humic substances. The combination of these two techniques was found to be very useful in determining diffusion coefficients of labile metal-humate complexes in quasi-labile systems. The values of diffusion coefficients of labile Ni and Cu complexes determined in this study are in good agreement with limited results from the literature. This finding is novel and can be very useful in further improving our understanding of the metal-humate interactions in natural environments.  相似文献   

17.
Divalent metal complexes of macrocyclic ligand 1,4,8,11-tetraazacyclotetradecane-1,8-bis(methylphosphonic acid)) (1,8-H4te2p, H4L) were investigated in solution and in the solid state. The majority of transition-metal ions form thermodynamically very stable complexes as a consequence of high affinity for the nitrogen atoms of the ring. On the other hand, complexes with Mn2+, Pb2+ and alkaline earth ions interacting mainly with phosphonate oxygen atoms are much weaker than those of transition-metal ions and are formed only at higher pH. The same tendency is seen in the solid state. Zinc(II) ion in the octahedral trans-O,O-[Zn(H2L)] complex is fully encapsulated within the macrocycle (N4O2 coordination mode with protonated phosphonate oxygen atoms). The polymeric {[Pb(H2L)(H2O)2].6H2O}n complex has double-protonated secondary amino groups and the central atom is bound only to the phosphonate oxygen atoms. The phosphonate moieties bridge lead atoms creating a 3D-polymeric network. The [{(H2O)5Mn}2(micro-H2L)](H2L).21H2O complex contains two pentaaquamanganese(II) moieties bridged by a ligand molecule protonated on two nitrogen atoms. In the complex cation, oxygen atoms of the phosphonate groups on the opposite sites of the ring occupy one coordination site of each metal ion. The second ligand molecule is diprotonated and balances the positive charge of the complex cation. Complexation of zinc(II) and cadmium(II) by the ligand shows large differences in reactivity of differently protonated ligand species similarly to other cyclam-like complexes. Acid-assisted dissociations of metal(II) complexes occur predominantly through triprotonated species [M(H3L)]+ and take place at pH < 5 (Zn2+) and pH < 6 (Cd2+).  相似文献   

18.
The Schiff base hydrazone ligand HL was prepared by the condensation reaction of 7-chloro-4-quinoline with o-hydroxyacetophenone. The ligand behaves either as monobasic bidentate or dibasic tridentate and contain ONN coordination sites. This was accounted for be the presence in the ligand of a phenolic azomethine and imine groups. It reacts with Cu(II), Ni(II), Co(II), Mn(II), UO(2) (VI) and Fe(II) to form either mono- or binuclear complexes. The ligand and its metal complexes were characterized by elemental analyses, IR, NMR, Mass, and UV-Visible spectra. The magnetic moments and electrical conductance of the complexes were also determined. The Co(II), Ni(II) and UO(2) (VI) complexes are mononuclear and coordinated to NO sites of two ligand molecules. The Cu(II) complex has a square-planar geometry distorted towards tetrahedral, the Ni(II) complex is octahedral while the UO(2) (VI) complex has its favoured heptacoordination. The Co(II), Mn(II) complexes and also other Ni(II) and Fe(III) complexes, which were obtained in the presence of Li(OH) as deprotonating agent, are binuclear and coordinated via the NNNO sites of two ligand molecules. All the binuclear complexes have octahedral geometries and their magnetic moments are quite low compared to the calculated value for two metal ions complexes and thus antiferromagnetic interactions between the two adjacent metal ions. The ligand HL and metal complexes were tested against a strain of Gram +ve bacteria (Staphylococcus aureus), Gram -ve bacteria (Escherichia coli), and fungi (Candida albicans). The tested compounds exhibited high antibacterial activities.  相似文献   

19.
Novel copper(II)-nitroxide complexes exhibiting a spin-transition-like behavior have been prepared and characterized. They include meso, chiral, and racemic 2-(3-pyridyl)-nitronyl nitroxides differently substituted in positions 4 and/or 5 by ethyl groups and pyrimidyl nitroxides. Depending on the stoichiometry of the reaction, tetranuclear and binuclear complexes were obtained whose structures are cyclic. The tetranuclear species, which include two intracyclic and two exocyclic metal sites, are similar to the previously reported complex of the tetramethylated analogue, while the binuclear complexes involve only endocyclic metal ions and have uncoordinated N-oxyl groups. The tetranuclear complexes exist as two isomers depending on the temperature of crystallization: at room temperature, N-oxyl ligand coordination is axial-axial, while it is axial-equatorial at low temperature. Unexpectedly, this isomerism concerns N-oxyl bonding to the exocyclic metal centers for the derivatives of 4,5-diethyl-substituted ligands while it involves the endocyclic metal site in the complex of the monoethylated ligand, which converts reversibly from a high-spin state to a low-spin state, as observed for the complex of the tetramethylated ligand. Binuclear complexes are diamagnetic at room temperature but convert to a paramagnetic state on warming (90-110 degrees C); the transition is irreversible and sharp.  相似文献   

20.
A general method for the study of weak metal complexes by emf(H) measurements has been developed using reduced formation functions instead of classical formation functions. This approach consists of subtracting the contribution of the products of the hydrolysis (protolysis) of the metallic cation (anion), as well as the possible protonated species of the ligand from the total number of associated H+, and from the total concentrations of metal or ligand, observing only the contribution of the reaction of interest. This was carried out using the FONDO version of the generalized least-squares computer program LETAGROP, written to analyze these reduced formation functions. The aim of this communication was to show in greater detail than in previous publications the data analysis of reactions in solution using these reduced formation functions. The method is illustrated using emf(H) data for the three-component systems H+–Be(II)–serine, H+–Mo(VI)–NTA and H+–V(IV)–V(V) investigated recently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号