首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Abstract

Imidazoles, thiazoles, and oxazoles have been identified as valuable molecules in pharmaceutical and agriculture chemistry. Molecules containing these scaffolds are excited in many natural products and biologically active molecules. During the last decade, magnetic nanomaterials have appeared as highly efficient catalysts in chemical science in general organic chemistry, because of their simple preparation, modification, and large surface area ratio. This article assists to review the application of magnetically reusable nanocatalysts in synthesis of biologically active imidazoles, thiazoles, and oxazoles.  相似文献   

2.
Metal-organic frameworks (MOFs) have an unprecedented ability to store gas molecules, however energy efficient regeneration remains challenging. Use of magnetic induction to aid this shows promise, but economical synthesis of the requisite composites is unresolved. Continuous flow chemistry has been reported as a rapid and reliable method of MOF synthesis, delivering step-change improvements in space time yields (STY). Here the scalable production of nanomaterials suitable for regeneration by magnetic induction is demonstrated. The zirconium MOF composite, MgFe2O4@UiO-66-NH2 is prepared using continuous flow chemistry resulting in a material of comparable performance to its batch counterpart. Upscaling using flow chemistry gave STY >25 times that of batch synthesis. Magnetic induced regeneration using this mass produced MFC for carbon capture is then demonstrated.  相似文献   

3.
A nickel-catalyzed cross-coupling of heteroaryl halides with chlorodifluoroacetamides and chlorodifluoroacetate has been developed. The combination of NiCl2 ⋅ DME with 4,4′-diNon-bpy, co-ligand PPh3, and additive LiCl renders the catalytic system efficient for the synthesis of medicinal interest heteroaryldifluoroacetamides. The application of the method leads to short and highly efficient synthesis of biologically active molecules, providing a facile route for applications in medicinal chemistry and agrochemistry.  相似文献   

4.
Abstract

Heterocyclic scaffolds are important components in the structure of many drugs and natural products. They are well-known compounds because of their broad spectrum of pharmaceutical and biological activities. In this paper, we provide an overview of the utilization of nickel complexes immobilized on magnetic nanoparticles as attractive and efficient catalytic systems for synthesis of heterocyclic molecules.  相似文献   

5.
Abstract

Heterocyclic scaffolds are important components in the structure of many drugs and natural products. They are well-known compounds because of their broad spectrum of pharmaceutical and biological activities. In this paper, we provide an overview of the utilization of copper complexes immobilized on magnetic nanoparticles as economical and efficient catalytic systems for the synthesis of heterocyclic molecules.  相似文献   

6.
Abstract

Synthesis of biologically active oligosaccharides, haptens and their protein conjugates is a major area of interest because of their role in antigen-antibody interaction and receptor effects1. A number of these molecules contain α-or β-linked 2-acetamido-2-deoxy-D-glucosamine (GlcNAc) moieties. Most commonly, during the oligosaccharide synthesis, introduction of the β-glycosidically linked GlcNAc residue is achieved by either the oxazoline2 or the phthalimido method3. Of these, the latter is preferred because 2-N-phthalimido protected glycosamine units having a halogen or a thioalkyl group at C-1 have consistently proved to be more efficient donors than are the oxazolines. However, time and again, subsequent conversion of the N-phthalimido to amine by hydrazinolysis has proved inadequate. This has often resulted in a poor overall yield after an otherwise efficient synthesis. Recently it was shown that the phthalimido function could be removed under mild conditions from a number of amino acids4. We now report that this technique can be efficiently used for the deprotection of the phthalimido function in suitably protected carbohydrate compounds (2,3 and 5).  相似文献   

7.
Manganese-based nanostructured contrast agents (CAs) entered the field of medical diagnosis through magnetic resonance imaging (MRI) some years ago. Although some of these Mn-based CAs behave as classic T1 contrast enhancers in the same way as clinical Gd-based molecules do, a new type of Mn nanomaterials have been developed to improve MRI sensitivity and potentially gather new functional information from tissues by using traditional T1 contrast enhanced MRI. These nanomaterials have been designed to respond to biological environments, mainly to pH and redox potential variations. In many cases, the differences in signal generation in these responsive Mn-based nanostructures come from intrinsic changes in the magnetic properties of Mn cations depending on their oxidation state. In other cases, no changes in the nature of Mn take place, but rather the nanomaterial as a whole responds to the change in the environment through different mechanisms, including changes in integrity and hydration state. This review focusses on the chemistry and MR performance of these responsive Mn-based nanomaterials.  相似文献   

8.
A newly developed chemoselective reaction of sodium arylsulfinates or arylsulfonyl chlorides with nitroarenes has been disclosed. The chemistry, in which non-toxic water and recyclable iron-based metal-organic frameworks are employed as the solvent and catalyst, respectively, provides an efficient approach for the generation of N-arylsulfonamides, which are widely present in biologically active compounds and drugs, rendering this methodology attractive to both synthetic and medicinal chemistry.  相似文献   

9.
From the perspective of synthesis, ynones are compounds of considerable interest because of their occurrence in a wide variety of biologically active molecules and as key synthetic intermediates. In this context, a facile and highly efficient synthesis of ynones was developed based on the high reactivity of benzotriazole esters formed in situ. Lithium acetylides can alkylate various carboxylic acids in yields ranging from 60% to 92%. To determine whether our methodology is useful for synthesising complex and biologically relevant molecules, we synthesise d-erythro-sphingosine in four steps and with 33% overall yield from l-serine.  相似文献   

10.
FluMag-SELEX as an advantageous method for DNA aptamer selection   总被引:6,自引:0,他引:6  
Aptamers are ssDNA or RNA oligonucleotides with very high affinity for their target. They bind to the target with high selectivity and specificity because of their specific three-dimensional shape. They are developed by the so-called Systematic Evolution of Ligands by Exponential Enrichment (SELEX) process. We have modified this method in two steps—use of fluorescent labels for DNA quantification and use of magnetic beads for target immobilization. Thus, radioactive labelling is avoided. Immobilization on magnetic beads enables easy handling, use of very small amounts of target for the aptamer selection, rapid and efficient separation of bound and unbound molecules, and stringent washing steps. We have called this modified SELEX technology FluMag-SELEX. With FluMag-SELEX we have provided a methodological background for our objective of being able to select DNA aptamers for targets with very different properties and size. These aptamers will be applied as new biosensor receptors. In this work selection of streptavidin-specific aptamers by FluMag-SELEX is described. The streptavidin-specific aptamers will be used to check the surface occupancy of streptavidin-coated magnetic beads with biotinylated molecules after immobilization procedures.  相似文献   

11.
Mitochondria are key organelles that perform vital cellular functions such as those related to cell survival and death. The targeted delivery of different types of cargos to mitochondria is a well-established strategy to study mitochondrial biology and diseases. Of the various existing mitochondrion-transporting vehicles, most suffer from poor cytosolic entry, low delivery efficiency, limited cargo types, and cumbersome preparation protocols, and none was known to be universally applicable for mitochondrial delivery of different types of cargos (small molecules, proteins, and nanomaterials). Herein, two new cell-penetrating, mitochondrion-targeting ligands (named MitoLigand) that are capable of effectively “tagging” small-molecule drugs, native proteins and nanomaterials are disclosed, as well as their corresponding chemoselective conjugation chemistry. Upon successful cellular delivery and rapid endosome escape, the released native cargos were found to be predominantly localized inside mitochondria. Finally, by successfully delivering doxorubicin, a well-known anticancer drug, to the mitochondria of HeLa cells, we showed that the released drug possessed potent cell cytotoxicity, disrupted the mitochondrial membrane potential and finally led to apoptosis. Our strategy thus paves the way for future mitochondrion-targeted therapy with a variety of biologically active agents.  相似文献   

12.
An efficient H/D exchange method allowing the deuteration of pyridines, quinolines, indoles, and alkyl amines with D2 in the presence of Ru@PVP nanoparticles is described. By a general and simple procedure involving mild reaction conditions and simple filtration to recover the labeled product, the isotopic labeling of 22 compounds proceeded in good yield with high chemo‐ and regioselectivity. The viability of this procedure was demonstrated by the labeling of eight biologically active compounds. Remarkably, enantiomeric purity was conserved in the labeled compounds, even though labeling took place in the vicinity of the stereogenic center. The level of isotopic enrichment observed is suitable for metabolomic studies in most cases. This approach is also perfectly adapted to tritium labeling because it uses a gas as an isotopic source. Besides these applications to molecules of biological interest, this study reveals a rich and underestimated chemistry on the surface of ruthenium nanoparticles.  相似文献   

13.
Indoles are ubiquitous structures that are found in natural products and biologically active molecules. The synthesis of indoles and indole‐involved synthetic methodologies in organic chemistry have been receiving considerable attention. Indole‐N‐carboxylic acids and derived indole‐N‐carboxamides are intriguing compounds, which have been widely used in organic synthesis, especially in multicomponent reactions and C?H functionalization of indoles. This Minireview summarizes the advances of reactions involving indole‐N‐carboxylic acids and indole‐N‐carboxamides in organic chemistry, and discusses the synthetic potential and perspective of this field.  相似文献   

14.
Nowadays, organic chemists are interested in the field of heterocyclic chemistry due to its use in the synthesis of a great variety of biologically active compounds. Heterocyclic compounds are widely found in nature and are essential for life. Among these, some natural nitrogen containing heterocyclic compounds have been used as chemotherapeutic agents. Their attachment to sugar molecules either as thioglycosides or as nucleosides analogues plays an important role in vital biological processes as well as in synthetic organic chemistry. Molecules containing benzothiazole (BT) nuclei are of this interesting class of compounds because some of them have been found to have a wide variety of biological activities. In this sense, we selected this topic to review and to then summarize the procedures related to the condensation reactions of o-aminothiophenoles (ATPs) as well as their disulfides with carboxylic acids, esters, orthoesters, acyl chlorides, amides, and nitriles. The condensation reactions with carbon dioxide (CO2) are included. Conventional methods with the use of acid and metal catalysts as well as recent green techniques, such as microwave irradiation, the use of ionic liquids, and ultrasound (US) chemistry, which have proven to have many advantages, were found in the review.  相似文献   

15.
Abstract

In medical and pharmaceutical science phosphonic acids and phosphonates play an important role with regard to their wide application in various drugs as medicines against osteoporosis or antiviral agents. In the course of the investigations on the coordination chemistry of biologically active phosphonates different salts of the phosphonoformate anion were prepared via hydrolysis of corresponding esters under basic conditions. Depending on the reaction and crystallization conditions, different sodium salts with the phosphonoformate moiety were obtained and structurally characterized.  相似文献   

16.
Abstract

A mild and efficient synthetic method has been developed for the preparation of biologically important quinoxalines in excellent yield from relatively safe precursor α-bromoketones and 1,2-diamines using catalytic amount of micellar sodium dodecyl sulfate in water at ambient temperature. The method is also found effective for the introduction of quinoxaline moiety into the ring A of pentacyclic triterpenoid, friedelin. Ambient reaction conditions, renewable catalytic condition, inherently safer chemistry, excellent product yields, and water as a reaction medium display both economic and environmental advantages.  相似文献   

17.
Small heterocyclic amines such as 1,3‐diaza‐bicyclo[3.2.2]nonane are known to be key components of biologically active molecules. A convenient synthesis of this compound utilizing a key Beckmann rearrangement of (Z)‐1‐aza‐bicyclo[2.2.2]octan‐3‐one oxime (6) with conc. H2SO4 under microwave irradiation was achieved. The desired compound (1) was obtained in 20% yield overall.  相似文献   

18.
《中国化学快报》2023,34(5):107820
In recent years, Fe3O4 nanomaterials have received much attention in analytical chemistry due to their excellent magnetic and peroxidase-like activity. As the catalytic characteristics of Fe3O4 nanomaterials is similar to those of horseradish peroxidase (HRP), Fe3O4 nanomaterials are also used as peroxidase mimics and have achieved a certain development in many fields based on latest research results. To improve the stability and catalytic ability of simple Fe3O4 nanomaterials, various modification strategies of Fe3O4 nanomaterials have been developed. The recent advances of these strategies have been presented and discussed. In addition, this paper introduces the application of Fe3O4 nanozymes in the detection of food and industrial pollutants, as well as in the field of biosafety.  相似文献   

19.

A one-pot, efficient three-component condensation of aldehydes, 2-naphthol, and 2-aminobenzothiazole in the presence of sodium hydrogen sulfate as an effective catalyst for the synthesis of 1-(benzothiazolylamino)methyl-2-naphthol derivatives under thermal and solvent-free conditions is described. These products involve two biologically active parts, Betti's base and benzothiazole. The present methodology offers several advantages, such as good yields, short reaction times, and easy work-up.  相似文献   

20.
The engineering of novel catalytic nanomaterials that are highly active for crucial carbon–carbon bond formations, easily recoverable many times, and biocompatible is highly desirable in terms of sustainable and green chemistry. To this end, catalysts comprising dendritic “click” ligands that are immobilized on a magnetic nanoparticle (MNP) core, terminated by triethylene glycol (TEG) groups, and incorporate Pd nanoparticles (PdNPs) have been prepared. These nanomaterials are characterized by transmission electron microscopy (TEM), high‐resolution TEM, inductively coupled plasma analysis, Fourier transform infrared spectroscopy, X‐ray photoelectron spectra and energy‐dispersive X‐ray spectroscopy. They are shown to be highly active, dispersible, and magnetically recoverable many times in Suzuki, Sonogashira, and Heck reactions. In addition, a series of pharmacologically relevant or natural products were successfully synthesized using these magnetic PdNPs as catalyst. For comparison, related PdNP catalysts deposited on MNPs bearing linear “click” PEGylated ligands are also prepared. Strong positive dendritic effects concerning ligand loading, catalyst loading, catalytic activity, and recyclability are observed, that is, the dendritic catalysts are much more efficient than non‐dendritic analogues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号