首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The correlations among electrical, optical properties and polymer morphologies of polymer network liquid crystals (PNLCs) constructed with various curing parameters are investigated. The experimental results indicate that high UV curing intensity, low curing temperature and high monomer-dopant concentration reduce the sizes of liquid crystal (LC) domains, thereby decreasing field-off response time and light scattering and increasing phase retardation of the PNLC cells. Photoinitiator concentration affects the LC domain size as well. For instance, increase in photoinitiator concentration results in the acceleration of polymerisation and thus decreases LC domain size. This effect increases driving voltages of the PNLC cells. Notably, excessive amounts of photoinitiator increases the LC domain size of the PNLC cell. Furthermore, dielectric measurement reveals that decrease in the LC domain size generally increases the dielectric relaxation frequency of the PNLC cells. When the LC domain size is small enough, the dielectric relaxation frequency of the PNLC cell is further dominated by the monomer concentration owing to the increased densities of polymer networks that facilitate the alignment of LC molecules.  相似文献   

2.
Polymer dispersed liquid crystal (PDLC) films with the size gradient of the LC droplets were prepared based on the epoxy/acrylate hybrid polymer matrix. The ultraviolet (UV) intensity gradient was induced by the UV-absorbing dye over the thickness of the samples. Taking advantage of the difference between the epoxy monomers and acrylate monomers in polymerisation rates and the UV intensity gradient, the gradient distribution of the LC droplet size was formed in PDLC films. The effect of the size gradient of the LC droplets on the electro-optical and the light-scattering properties of PDLC films was investigated. The results showed that due to the size gradient distribution of the LC droplets, PDLC films could exhibit the strong light scattering in the UV-visible-near infrared (VIS-NIR) region. Consequently, it provides a potential approach for modulating NIR light transmittance.  相似文献   

3.
The preparation is reported of particles of photopolymerisable monomer/chiral dopant composites with a crystalline (Cr)‐chiral nematic (N*) phase transition. By mixing particles with different pitches of the N* phase in the Cr phase and crosslinking the liquid crystal (LC) monomer molecules by photopolymerisation in the planarly oriented N* phase, an N*‐LC composite film with a non‐uniform pitch distribution was obtained. Experimental results show that the bandwidth of the reflection spectrum and the location of reflection band of the composite films can be controlled accurately by controlling the pitch lengths of the N* phase of the particles. Effects of polymerisation temperature and UV intensity on the non‐uniform pitch distribution of N*‐LC composite films were investigated.  相似文献   

4.
The effect of UV curing intensity and curing time on the electro-optic behaviour and network morphology of reverse mode polymer stabilized cholesteric textures (PSCTs) has been studied. Scanning electron micrographs indicate that increasing the curing intensity generally results in a more open polymer network characterized by a larger average void size, while the morphology of the individual strands remains largely unchanged. In addition, as the polymerization process proceeds, voids within the network are observed to decrease in size. PSCTs with sufficiently large network voids exhibit a two-stage switching behaviour consistent with a model in which the cholesteric liquid crystal is divided between two distinct environments one in which the liquid crystal is strongly dominated by the polymer network, the other in which a bulk-like behaviour, comparable to the unstabilized cholesteric material, is observed.  相似文献   

5.
To study effects of the crosslinking agent/diluents/thiol on morphology of the polymer matrix and the electro-optical properties of polymer-dispersed liquid crystal (PDLC) films, samples were prepared by ultraviolet (UV)-initiated polymerisation. Due to the interaction between thiol–acrylate reaction and acrylate monomers polymerisation, the sample compositions were the foremost determinant to the microstructures which in turn played an essential role on the electro-optical properties of the PDLC films. With the increasing content of the crosslinking agent, the LC droplet size decreased, while the thiol had a contrary effect on the LC droplet size. It was demonstrated that the superior properties of the low-driven voltage (37.2 V), the high contrast ratio (148.2), the short response time (14.9 ms) and the high saturation transmittance (86.6%) could benefit from a novel microstructure which had a dense surface and meshes with microspheres attached. It was of great significance for the optimisation and the potential applications of the PDLC films.  相似文献   

6.
ABSTRACT

As a typical class of electrically light-transmittance-switchable (ELTS) composites materials, polymer dispersed liquid crystal (PDLC) films have been widely used in displays, smart windows, light shutters, etc. However, the commercialised PDLC film still requires a comparatively high voltage to maintain its transparent state, leading to huge power consumption and even a potential safety risk. In this regard, we proposed a ‘heat followed UV’ stepwise polymerisation strategy for preparing a kind of ELTS film with a low driving voltage (~20.7 V) through constructing a coexistent system of polymer dispersed and polymer stabilised liquid crystal (PD&SLC). In this new PD&SLC system, vertically orientated polymer networks were formed within LC domains to induce the vertical alignment of LC, thereby reducing the driving voltage. Also, the as-made PD&SLC film exhibited good flexibility due to the high content of polymer. Moreover, the effects of the liquid crystalline polymerisable monomers content on the polymer morphologies as well as the electro-optical properties of the as-made PD&SLC films were elaborately investigated.  相似文献   

7.
ABSTRACT

Polymer-dispersed liquid crystal (PDLC) films containing a series of monomers with different alkyl chain lengths were prepared by nucleophile-initiated thiol-ene click reaction. The effect of alkyl chain length of monomers, dye and temperature on electro-optical properties of PDLC films was investigated. It was found that the alkyl chain length and polymerisation rate of monomers together determine the size of liquid crystal (LC) droplets, thus affecting the electro-optical properties of PDLC. In addition, the type and content of dyes could be optimised to obtain PDLC materials with better comprehensive properties for display.  相似文献   

8.
Terephthaloyl chloride was reacted with 4‐hydroxy benzoic acid to get terephthaloylbis(4‐oxybenzoic) acid, which was characterized and further reacted with epoxy resin [diglycidyl ether of bisphenol A (DGEBA)] to get a liquid‐crystalline epoxy resin (LCEP). This LCEP was characterized by Fourier transform infrared spectrometry, 1H and 13C NMR spectroscopy, differential scanning calorimetry (DSC), and polarized optical microscopy (POM). LCEP was then blended in various compositions with DGEBA and cured with a room temperature curing hardener. The cured blends were characterized by DSC and dynamic mechanical analysis (DMA) for their thermal and viscoelastic properties. The cured blends exhibited higher storage moduli and lower glass‐transition temperatures (tan δmax, from DMA) as compared with that of the pure DGEBA network. The formation of a smectic liquid‐crystalline phase was observed by POM during the curing of LCEP and DGEBA/LCEP blends. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3375–3383, 2003  相似文献   

9.
We propose the technique for formation of the polymer orientation film (POF) by polymerisation of the monomers being dissolved in the liquid crystal (LC) material for controlling the orientation of the LC molecules. For obtaining the homeotropic orientation, combination of the two monomers, 4-(4?-octyloxy-biphenyl-4-yloxy)-butyl ester (AOBBE) and 2,7-dimethacryloyl-oxy-anthracene (DMAAnth), was found to be useful. The monomer DMAAnth initiates the polymerisation under ultraviolet (UV) light exposure, and the AOBBE unit induces the homeotropic orientation. The monomer DMAAnth is useful for maintaining the high voltage holding ratio and low residual direct-current voltage after UV light exposure because the molecules of DMAAnth do not remain in the LC layer.  相似文献   

10.
To develop viable polymer stabilized liquid crystal systems, it is crucial to understand the factors that affect polymer nanostructure evolution. This work examines the influence of the photopolymerization of aliphatic and fluorinated monoacrylate monomer within a room temperature smectic liquid crystal (LC). Additionally, the effect of LC order on polymerization kinetics, monomer and polymer organization, and the effect of the polymer on LC properties have been examined. Through this work, insight has been gained regarding the impact that the introduction of a fluorinated monoacrylate monomer has on polymerization kinetics, LC organization, and monomer/polymer segregation and organization within a polymer/LC system. Fluorinated moieties lower the surface energy of the monomer to enhance segregation between the smectic layers of the LC as compared with an analogous aliphatic monomer. Additionally, the enhanced segregation significantly increases the polymerization rate in the smectic phase and drives the continued segregation of the fluorinated polymer during and after polymerization. Fluorination also leads to the formation of an ordered polymer nanostructure if polymerized in ordered LC phases. This ordering is particularly evident when the fluorinated monomer is polymerized in the smectic phase in which the monomer is organized between the smectic layers of the LC. In addition, the ordered polymer structure found with the fluorinated monomer in the smectic phase leads to continued birefringence above the clearing point of the LC due to surface interactions between the LC and the ordered fluorinated polymer. The continued birefringence offers an exceptional opportunity to examine how factors such as polymer molecular mass and UV light intensity affect the overall polymer morphology of these polymer/LC systems. As the initiator concentration and UV light intensity are decreased, longer polymer chains form lattice-type morphologies; whereas, shorter polymer chains form smoother morphologies that more closely mirror the texture of the LC smectic phase.  相似文献   

11.
To develop viable polymer stabilized liquid crystal systems, it is crucial to understand the factors that affect polymer nanostructure evolution. This work examines the influence of the photopolymerization of aliphatic and fluorinated monoacrylate monomer within a room temperature smectic liquid crystal (LC). Additionally, the effect of LC order on polymerization kinetics, monomer and polymer organization, and the effect of the polymer on LC properties have been examined. Through this work, insight has been gained regarding the impact that the introduction of a fluorinated monoacrylate monomer has on polymerization kinetics, LC organization, and monomer/polymer segregation and organization within a polymer/LC system. Fluorinated moieties lower the surface energy of the monomer to enhance segregation between the smectic layers of the LC as compared with an analogous aliphatic monomer. Additionally, the enhanced segregation significantly increases the polymerization rate in the smectic phase and drives the continued segregation of the fluorinated polymer during and after polymerization. Fluorination also leads to the formation of an ordered polymer nanostructure if polymerized in ordered LC phases. This ordering is particularly evident when the fluorinated monomer is polymerized in the smectic phase in which the monomer is organized between the smectic layers of the LC. In addition, the ordered polymer structure found with the fluorinated monomer in the smectic phase leads to continued birefringence above the clearing point of the LC due to surface interactions between the LC and the ordered fluorinated polymer. The continued birefringence offers an exceptional opportunity to examine how factors such as polymer molecular mass and UV light intensity affect the overall polymer morphology of these polymer/LC systems. As the initiator concentration and UV light intensity are decreased, longer polymer chains form lattice-type morphologies; whereas, shorter polymer chains form smoother morphologies that more closely mirror the texture of the LC smectic phase.  相似文献   

12.
We propose the method for formation of the vertical alignment polymer film by polymerisation of the monomers being dissolved in the liquid crystal (LC) material. For obtaining the vertical alignment, combination of the two monomers, 4-(4?-octyloxy-biphenyl-4-yloxy)-butyl ester (AOBBE) and 2,7-dimethacryloyl-oxy-phenanthrene (DMAPhen), was found to be useful.

The monomer DMAPhen initiates the polymerisation under UV light exposure, and the AOBBE unit induces the vertical alignment without generating any alignment defects. The monomer DMAPhen is useful for maintaining the high voltage holding ratio and low residual direct current voltage after UV light exposure because the molecules of DMAPhen do not remain in the LC layer.  相似文献   

13.
Polymer-dispersed liquid crystal (PDLC) films were prepared by photochemical polymerisation with a series of (meth)acrylate monomers. The effects of monomer structure on the morphology of polymer networks in the PDLC films were studied. The acrylate monomers without sidegroup chain formed uniform polymer networks. The methacrylate monomers with methyl as their sidegroup chains formed lace-like networks. The size of the LC droplets increased with increasing the length of the flexible chain of both methacrylate and acrylate monomers. Meanwhile, the effects of the morphology of the polymer network on the electro-optical properties of PDLC films were also investigated.  相似文献   

14.
Abstract

The dielectric relaxation of the liquid crystal 4-n-pentyl-4′-cyanobiphenyl (K15) in the presence of an anisotropic network has been studied. Anisotropic networks containing K15 molecules were prepared by in situ polymerisation of liquid-crystalline diacrylate molecules in a mixture containing K15. By changing the network concentration, the effect of the network molecules on the behaviour of the K15 molecules, which were not chemically attached to the network, was investigated. With increasing network concentration it was found that the mean relaxation times of K15 molecules shifted to lower temperatures and that their distribution became broader. The activation energy associated with the relaxation, however, remained almost constant before showing some increase at high network concentrations.  相似文献   

15.
2,2′-Azobis-[2-cyano-(4-ethylphenol)] (ABCP) was prepared from parahydroxyacetophenone, using hydrazine sulfate and sodium cyanide. Biphenylol ester of ABCP, 2,2′-azobis-[2-p-biphenyloxy-(4-ethylphenol)] (BECP) was synthesized via the acid route. Combined liquid crystalline polyurethanes (CLCPUs) were synthesized from 1,6-diisocyanatohexane (HDI) and BECP in dimethylformamide (DMF) at 110°C under nitrogen atmosphere. The effect of partial replacement of BECP by 4,4′-dihydroxy biphenyl (DHBP) on liquid crystalline (LC) properties was studied. The polymers were characterized by proton and 13C NMR, FTIR, and UV spectroscopy. Elemental analysis were done for determining the percentage content of C, H, and N and the molecular weights of the polymers were determined by gel permeation chromatography (GPC). Thermogravimetric investigations (TGA) of the polyurethanes (PUs) were performed to study the decomposition. The LC nature of the PUs was confirmed by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). Cross-polarized optical microscopy studies demonstrated the existence of two distinct crystalline morphologies, a spherulitic morphology with high mole ratio of DHBP and a thread-like crystalline morphology with that of BECP. All the PUs synthesized showed a LC nature with a wide temperature range. Partial replacement of BECP by DHBP changed the mesomorphic nature, transition temperature, and temperature range of the mesophase. © 1995 John Wiley & Sons, Inc.  相似文献   

16.
Summary: Molecular dynamic simulation of side chain liquid crystalline elastomer has been carried out. As an initial state a flexible polymer network in a low molecular liquid-crystal (LC) solvent was used. The LC solvent comprises of anisotropic rod-like semiflexible linear molecules (mesogens) composed of particles bonded into the chain by FENE potential. Rigidity of LC molecules was induced by a bending potential. All interactions between nonbonded particles are described by a repulsive Lennard-Jones potential. For the systems with different values of density and order parameter obtained after sufficiently long trajectory the attachment of ends of mesogens to the polymer network was simulated. The kinetic of the process of mesogens attachment to network was studied as well as morphology of attachment. The structural and dynamical behaviour of side chain LC elastomer was studied and compared with systems of polymer network in low molecular LC solvent.  相似文献   

17.
We report the thermal and self-assembly properties of C3-symmetric liquid crystalline (LC) molecules consisting of a conformationally tunable triazole-based mesogen and six-fold alkyl chains. Unlike the LC compound (1) based on non-crystallisable octyl chains, 2 and 3, which have crystallisable dodecyl and tetradecyl chains, respectively, exhibit a cold crystallisation which only takes place under slow heating conditions (2°C/min). In contrast with the vertically interdigitated lamellar crystalline phase of 1, a laterally interdigitated bilayered lamellar structure driven by the crystallisation of the dodecyl or tetradecyl chains is observed in the cold crystallisation temperature range. In addition to their crystalline morphology, 2 and 3 show LC morphological behaviour distinct from that of 1, 2 and 3 exhibit a hexagonal columnar LC phase consisting of T-shaped conformers rather than the lamellar LC phase of 1. The morphological transformation from the lamellar (1) to the columnar phase (2 and 3) can be rationalised by the alleviation of the conformational energy of the longer alkyl chains. Consequently, the simple variation of alkyl chain length in the C3-symmetric LC system results in contrasting thermal and assembly properties in the crystalline and LC phases.  相似文献   

18.
Extremely low ion density, 10?8?10?11 molar fraction, which inevitably exists due to residual ion impurities even in a purified liquid crystal (LC) compound, can significantly influence the electro-optic response in LC devices. We found that the density of ionic molecules increased with the addition of various dopants including triphenylphosphine oxide (TPPO), molecules with the functional group of aldehyde, epoxide and so on into a nematic LC cell by observing the electrical response of the LC cells and that the irradiation of ultraviolet (UV) light accelerated the generation of ionic molecules, indicating degradation of organic materials. However, the addition of reactive mesogen (RM) compounds to the LC mixture significantly decreased the effective density of ions during and after the photopolymerisation process. The cured RM networks effectively captured the ion impurities during the photopolymerising process and their ion capturing ability was sustained even after completing the photopolymerisation process. This observation may provide a simple and useful way to control the effective ion density in a liquid medium down to extremely low levels.  相似文献   

19.
In this study, a method of preparing wide-band reflection cholesteric liquid crystals (CLCs) films by UV-radical polymerisation in combination with UV-cationic polymerisation is proposed. Because the helical twisting power (HTP) of the chiral dopant decreases with increasing temperature and the polymerisation rate of UV-initiated free radical polymerisation is faster than UV-initiated cationic polymerisation, by adjusting the temperature, broadband reflective films with non-uniform pitch distribution are obtained. The fractured surface of the polymer network of the broadband reflective films is observed by scanning electron microscopy (SEM), which reveals the presence of non-uniform pitch distribution. In addition, the influences of monomer concentration, UV light intensity and UV curing time on the consequent non-uniform pitch distribution have been studied.  相似文献   

20.

A polymer-stabilised cholesteric liquid crystal (PSChLC) was fabricated by ultraviolet (UV) induced polymerisation of photopolymerisable acrylate monomers mixed in a cholesteric liquid crystal (ChLC). A polymer network with a concentration gradient, which was induced by UV light absorption of dye along the propagation direction, was formed. A hydrogen bond, arising between the polymer network with a concentration gradient containing carboxyl as proton donors and chiral dopant (CD) as proton acceptors, induced a pitch gradient in PSChLC and then, as a consequence, broadband reflection. The broadband reflection is associated with the concentration and the composition of photopolymerisable acrylate monomers, the concentration of CD and the polymerisation temperature. Examining the morphologies of the polymer network by scanning electron microscopy, the helix structure and pitch gradient were verified, confirming the pitch gradient of the PSChLC and revealing the essence of the formation of broadband reflection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号