首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Some new N‐4‐Fluorobenzoyl phosphoric triamides with formula 4‐F‐C6H4C(O)N(H)P(O)X2, X = NH‐C(CH3)3 ( 1 ), NH‐CH2‐CH=CH2 ( 2 ), NH‐CH2C6H5 ( 3 ), N(CH3)(C6H5) ( 4 ), NH‐CH(CH3)(C6H5) ( 5 ) were synthesized and characterized by 1H, 13C, 31P NMR, IR and Mass spectroscopy and elemental analysis. The structures of compounds 1 , 3 and 4 were investigated by X‐ray crystallography. The P=O and C=O bonds in these compounds are anti. Compounds 1 and 3 form one dimensional polymeric chain produced by intra‐ and intermolecular ‐P=O···H‐N‐ hydrogen bonds. Compound 4 forms only a centrosymmetric dimer in the crystalline lattice via two equal ‐P=O···H‐N‐ hydrogen bonds. 1H and 13C NMR spectra show two series of signals for the two amine groups in compound 1 . This is also observed for the two α‐methylbenzylamine groups in 5 due to the presence of chiral carbon atom in molecule. 13C NMR spectrum of compound 4 shows that 2J(P,Caliphatic) coupling constant for CH2 group is greater than for CH3 in agreement with our previous study. Mass spectra of compounds 1 ‐ 3 (containing 4‐F‐C6H4C(O)N(H)P(O) moiety) indicate the fragments of amidophosphoric acid and 4‐F‐C6H4CN+ that formed in a pseudo McLafferty rearrangement pathway. Also, the fragments of aliphatic amines have high intensity in mass spectra.  相似文献   

2.
The heterogeneous phase reaction of excess sodium salt of 2-hydroxypyridine (OHpy) with [Ru(κ2C,O-RL)(PPh3)2(CO)Cl] (1) afforded complexes of the type [Ru(κ1C-RL)(PPh3)2(CO)(Opy)] (2) in excellent yield [κ2C,O-RL is 4-methyl-6-((N-R-arylimino)methyl)phenolato-C2,O), κ1C-RL is 4-methyl-6-((N-R-arylimino)methyl)phenol-C2) and R is H, Me, OMe, Cl]. The chelation of Opy is attended with the cleavage of Ru-O and Ru-Cl bonds and iminium-phenolato → imine-phenol prototropic shift. The 12 conversion is irreversible and the type 2 species are thermodynamically more stable than the acetate, nitrite, and nitrate complexes of 1. The spectral (UV-vis, IR, NMR) and electrochemical data of the complexes are reported. In dichloromethane solution the complexes display one quasi-reversible RuIII/RuII cyclic voltammetric response with E1/2 in the range 0.65–0.69 V versus Ag/AgCl. The crystal and molecular structures of [Ru(κ1C-HL)(PPh3)2(CO)(Opy)]·2C6H6·0.5H2O, 2(H)·2C6H6·0.5H2O and [Ru(κ1C-ClL)(PPh3)2(CO)(Opy)]·2C6H6·0.25H2O, 2(Cl)·2C6H6·0.25H2O are reported, which revealed a distorted octahedral RuC2P2NO coordination sphere. The pairs (P,P), (C,O), and (C,N) define the three trans directions. The electronic structures of the complexes are also scrutinized by density functional theory.  相似文献   

3.
Preparation and Properties of Soluble and Polysiloxane-Supported (Ether-Phosphine)ruthenium(II) Complexes Phosphine-modified Polysiloxanes of the type x SiO2 · [SiO3/2(CH2)6P(Ph)R] (x = 0 – 3, I–IV ) were prepared by hydrolytic condensation of (MeO)3Si(CH2)6P(Ph)R [ 1 ; R = CH2CH2OMe ( a ), CH2C4H7O ( b ), CH2C4H7O2 ( c ), Ph ( d )]. Crosslinking was achieved by cocondensation of 1 and Si(OEt)4. 2 SiO2 · [SiO3/2(CH2)6P(Ph)CH2CH2OMe] ( IIIa ) was investigated by means of 31P and 29Si CP-MAS-NMR-spectroscopy, especially in view of a quantification of silyl species which revealed the following ratios: T2:T4:Q2:Q3:Q4 = 76:158:48:135:82. Reaction of RuCl2(PPh3)3 with 3 moles of 1a gave fluxional RuCl2(P∩O)(P~O)2 ( 4a ). From its temperature dependent 31P{1H}-NMR spectrum the temperatures of coalescence and the corresponding activation enthalpies could be estimated at -25°C (46 kJ · mol?1) and +20°C (55 kJ · mol?1). Soluble 1a-d as well as their insoluble counterparts I-IV were treated with [RuCl2(CO)2]n to give all-trans-RuCl2(CO)2(PR3)2 ( 6 ). On heating (120°C) 6 could be transformed into isomeric cis, cis, trans-RuCl2(CO)2(PR3)2 ( 7 ). Decarbonylation occurred on irradiation of 6 . Polysiloxane-supported ruthenium complexes were proved to be active in the heterogeneous hydrogenation of crotonaldehyde. Thus, at p(H2) = 50 bat, T = 120°C, reaction time = 190 min, and at a molar ratio of aldehyde: Ru = 250:1, all-trans-RuCl2(CO)2(P~O)2 ( 6f , O,P = IIIa ) effected a conversion of 50%, crotyl alcohol being formed in comparatively high selectivities. Moreover, no loss of metal or ligand from the support could be observed.  相似文献   

4.
The reaction of NiCl2 with 1,3‐bis[(diphenylphosphanyl)methyl]hexahydropyrimidine in the presence of 2,6‐dimethylphenyl isocyanide and KPF6 afforded a new pentacoordinated PCP pincer NiII complex, namely {1,3‐bis[(diphenylphosphanyl)methyl]hexahydropyrimidin‐2‐yl‐κN2}(2,6‐dimethylphenyl isocyanide‐κC)nickel(II) hexafluoridophosphate 0.70‐hydrate, [Ni(C9H9N)(C30H30ClN2P2)]PF6·0.7H2O or [NiCl{C(NCH2PPh2)2(CH2)3‐κ3P,C,P′}(Xylyl‐NC)]PF6·0.7H2O, in very good yield. Its X‐ray structure showed a distorted square‐pyramidal geometry and the compound does not undergo dissociation in solution, as shown by variable‐temperature NMR and UV–Vis studies. Density functional theory (DFT) calculations provided an insight into the bonding; the nickel dsp2‐hybridized orbitals form the basal plane and the nearly pure p orbital forms the axial bond. This is consistent with the NBO (natural bond orbital) analysis of analogous nickel(II) complexes.  相似文献   

5.
The pendant‐armed ligands L1 and L2 were synthesized by N‐alkylation of the four secondary amine groups of the macrocyclic precursor L using o‐nitrobenzylbromide (L1) and p‐nitrobenzylbromide (L2). Nitrates and perchlorates of CuII, NiII and CoII were used to synthesize the metal complexes of both ligands and the complexes were characterized by microanalysis, MS‐FAB, conductivity measurements, IR and UV‐Vis spectroscopy and magnetic studies. The crystal structures of L1, [CuL1](ClO4)2·CH3CN·H2O, [CuL2](ClO4)2·6CH3CN, [CuL2][Cu(NO3)4]·5CH3CN·0.5CH3OH and [NiL2](ClO4)2·3CH3CN·H2O were determined by single crystal X‐ray crystallography. These structural analysis reveal the free ligand L1, three mononuclear endomacrocyclic complexes {[CuL1](ClO4)2·CH3CN·H2O, [CuL2](ClO4)2·6CH3CN and [NiL2](ClO4)2·3CH3CN·H2O} and one binuclear complex {[CuL2][Cu(NO3)4]·5CH3CN·0.5CH3OH} in which one of the metals is in the macrocyclic framework and the other metal is outside the ligand cavity and coordinated to four nitrate ions.  相似文献   

6.
The mixed‐amide phosphinates, rac‐phenyl (N‐methylcyclohexylamido)(p‐tolylamido)phosphinate, C20H27N2O2P, (I), and rac‐phenyl (allylamido)(p‐tolylamido)phosphinate, C16H19N2O2P, (II), were synthesized from the racemic phosphorus–chlorine compound (R,S)‐(Cl)P(O)(OC6H5)(NHC6H4p‐CH3). Furthermore, the phosphorus–chlorine compound ClP(O)(OC6H5)(NH‐cyclo‐C6H11) was synthesized for the first time and used for the synthesis of rac‐phenyl (benzylamido)(cyclohexylamido)phosphinate, C19H25N2O2P, (III). The strategies for the synthesis of racemic mixed‐amide phosphinates are discussed. The P atom in each compound is in a distorted tetrahedral (N1)P(=O)(O)(N2) environment. In (I) and (II), the p‐tolylamido substituent makes a longer P—N bond than those involving the N‐methylcyclohexylamido and allylamido substituents. In (III), the differences between the P—N bond lengths involving the cyclohexylamido and benzylamido substituents are not significant. In all three structures, the phosphoryl O atom takes part with the N—H unit in hydrogen‐bonding interactions, viz. an N—H...O=P hydrogen bond for (I) and (N—H)(N—H)...O=P hydrogen bonds for (II) and (III), building linear arrangements along [001] for (I) and along [010] for (III), and a ladder arrangement along [100] for (II).  相似文献   

7.
Areneruthenium(II) compounds [Ru(p‐cym)Cl2{κPiPrP(CH2CH2OMe)2}], 3 , and [Ru(arene)Cl2{κP‐RP(CH2CO2Me)2}] 4 – 7 (arene=p‐cym (=1‐methyl‐4‐isopropylbenzene), mes (=1,3,5‐trimethylbenzene); R=iPr, tBu) were prepared from the dimers [Ru(arene)Cl2]2 and the corresponding functionalized phosphine. Treatment of 6 and 7 with 1 equiv. of AgPF6 affords the monocationic complexes [Ru(mes)Cl{κ2P,O‐RP(CH2C(O)OMe)(CH2CO2Me)}]PF6, 10 and 11 , while the related reaction of 5 – 7 with 2 equiv. of AgPF6 produces the dicationic compounds [Ru(p‐cym){κ3P,O,O‐tBuP(CH2C(O)OMe)2}](PF6)2 ( 12 ) and [Ru(mes){κ3P,O,O‐RP(CH2C(O)OMe)2}](PF6)2, 13 and 14 . Partial hydrolysis of one hexafluorophosphate anion of 12 – 14 leads to the formation of [Ru(arene){κ2P,O‐RP(CH2C(O)OMe)(CH2CO2Me)}(κO‐O2PF2)]PF6, 15 – 17 , of which 17 (arene=mes; R=tBu) has been characterized by X‐ray crystallography. Compounds 13 and 14 react with 2 equiv. of KOtBu in tBuOH/toluene to give the unsymmetrical complexes [Ru(mes){κ3P,C,O‐RP(CHCO2Me)(CH=C(O)OMe)}], 18 and 19 , containing both a five‐membered phosphinoenolate and a three‐membered phosphinomethanide ring. The molecular structure of compound 18 has been determined by X‐ray structure analysis. The neutral bis(carboxylate)phosphanidoruthenium(II) complexes [Ru(arene){κ3P,O,O‐RP(CH2C(O)O)2}], 20 – 23 are obtained either by hydrolysis of 18 and 19 , or by stepwise treatment of 4 and 5 with KOtBu and basic Al2O3. Novel tripodal chelating systems are generated via insertion reactions of 19 with PhNCO and PhNCS.  相似文献   

8.
Complex Chemistry of Polyfunctional Ligands. XXXI. Complexes of Tetrakis(diphenylphosphorylmethyl) methane with FeCl3, SnCl4, and SbCl5 C[CH2P(O)(C6H5)2]4 forms with FeCl3 the compounds C[CH2P(O)(C6H5)2]4 · 2FeCl3 and C[CH2P(O)(C6H5)2]4 · 4 FeCl3. From their IR spectra ionic, spirocyclic structures have been derived. C[CH2P(O)(C6H5)2]4 yields with SnCl4 and SbCl5 also spirocyclic compounds of the composition C[CH2P(O)(C6H5)2]4 · 2 SnCl4 and C[CH2P(O)(C6H5)2]4 · 4 SbCl5, but the SnCl4 derivative has a nonionic structure.  相似文献   

9.
Nickel(II) carboxylates [Ni(CH3(CH2)14COO)2(H2O)2] (1) and [Ni(C6H5COO)2(H2O)2] (2) were obtained from reactions of NiCl2·6H2O with CH3(CH2)14COONa and C6H5COONa, respectively. Complex 1 reacted with pyridine (pyr) to form [Ni(CH3(CH2)14COO)2(pyr)2(H2O)2] (3) and [Ni2(μ2-H2O)(CH3(CH2)14COO)4(pyr)4] (4) in the same reaction mixture, and reacted with cyclam to form an ionic complex, [Ni(CH3(CH2)14COO)(cyclam)(H2O)]CH3(CH2)14COO·4H2O (5). In contrast, 2 reacted with cyclam to form [Ni(C6H5COO)2(cyclam)] (6). Finally, 6 reacted with p-(hexadecyloxy)pyridine (L) to form an ionic complex, [Ni(cyclam)(L)2](C6H5COO)2 (7). Complexes 36 were single crystals. All complexes have octahedral Ni(II) center(s) and were magnetic. Complexes with cyclam as co-ligand were more thermally stable than those with pyridine and its derivative, L. Complexes 3 and 4 were mesomorphic after partial loss of water and/or pyridine ligands on heating. The ionic complexes 5 and 7 were not mesomorphic, but showed good thermoelectrical behavior with negative Se values in CHCl3 (?0.28 mV K?1 for 5; -0.39 mV K?1 for 7) and positive Se values in C2H5OH (+0.25 mV K?1 for 5; +0.20 mV K?1 for 7).  相似文献   

10.
New metal(II) complexes with empirical formulae Co(ibup)2·4H2O, Cd(ibup)2·3H2O, Co(nap)2·H2O, Cd(nap)2·3H2O (where ibup=(CH3)2CHCH2C6H4CH(CH3COO) and nap=CH3O(C10H6)CH(CH3COO)) were isolated and investigated. The complexes were characterized by elemental analysis, molar conductance, IR spectroscopy and thermal decomposition. The thermal behavior was studied by TG, DTG, DTA methods under non-isothermal conditions in air atmosphere. The hydrated complexes lose water molecules in first step. All complexes decompose via intermediate products to corresponding metal oxides CoO and CdO. A coupled TG-MS system was used to detect the principal volatile products of thermolysis and fragmentation processes of Co(nap)2·H2O. The IR spectra of studied complexes revealed also absorption of the carboxylate group. Principal concern with the position of asymmetric, symmetric frequencies. The value of their separation allow to deduce about type of coordination these groups.  相似文献   

11.
Three novel carboxyarylphosphonate polymers {[Zn2(PCP)(H2PCP)(phen)2] · H2O}n ( 1 ), [Zn(HPCP)(4,4′‐bipy)]n ( 2 ), and [Zn3(MCP)2(2,2′‐bipy)]n ( 3 ) [PCP3– = p‐O2C(C6H4)CH2PO33–, MCP3– = m‐O2C(C6H4)CH2PO33– and phen = phenanthroline] were synthesized and characterized by single‐crystal X‐ray diffraction. Compound 1 features a butterfly‐shaped dimer consisting of [Zn4P4O10] tetranuclear units, which are further linked by hydrogen bonds and π–π stacking interactions into a 3D supramolecular framework. In 2 , there is an infinite P–O–Zn inorganic 2D (4,4) layer with the phosphonate moieties of HPCP2– and unidentate 4,4′‐bipy ligands vertically sticking out. As for 3 , the novel [Zn6P4O12] hexanuclear units with “chair“ conformation are tetrahedrally bridged by eight MCP3– to generate a 2D double‐layer, in which the windows are occupied by 2,2′‐bipy molecules. Additionally, 2D correlation analysis of FTIR with thermal perturbation of 3 were discussed. Compounds 1 – 3 exhibit intense solid state fluorescent emissions. Thermogravimetric analyses suggested the very high stability.  相似文献   

12.
Six mono/double‐layered 2D and three 3D coordination polymers were synthesized by a self‐assembly reaction of Zn (II) salts, organic dicarboxylic acids and L1/L2 ligands. These polymeric formulas are named as [Zn(L1)(C4H2O4)0.5 (H2O)]n·0.5n(C4H2O4)·2nH2O ( 1 ), [Zn2(L2)(C4H2O4)2]n·2nH2O ( 2 ), [Zn(L1)(m‐BDC)]n ( 3 ), [Zn2(L2)(m‐BDC)2]n·2nH2O ( 4 ), [Zn3(L1)2(p‐BDC)3(H2O)4]n·2nH2O ( 5 ), [Zn2(OH)(L2) (p‐BDC)1.5]n ( 6 ), [Zn2(L1)(p‐BDC)2]n·5nH2O ( 7 ), [Zn2(L2)(p‐BDC)2]n·3nH2O ( 8 ) and [Zn2(L1)(C4H4O4)1.5(H2O)]n·n(ClO4nH2O ( 9 ) [L1 = N,N′‐bis (pyridin‐4‐ylmethyl)propane‐1,2‐diamine, L2 = N,N′‐bis (pyridin‐3‐ylmethyl)propane‐1,2‐ diamine, m‐BDC2? = m‐benzene dicarboxylate, p‐BDC2? = p‐benzene dicarboxylate]. Meanwhile, these polymers have been characterized by elemental analysis, infrared, thermogravimetry (TG), photoluminescence, powder and single‐crystal X‐ray diffraction. Polymers 1–6 present mono‐ and double (4,4)‐layer motifs accomplished by L1/L2 ligands with diverse conformations and organic dicarboxylates, and the layer thickness locates in the range of 5.8–15.0 Å. In three 3D polymers, the L1 and L2 molecules adopt the same cis‐conformations and join adjacent Zn (II) cations together with p‐BDC2? or succinate, giving rise to different binodal (4,4)‐c nets with (4.52.83)(4.53.72) ( 7 ), pts ( 8 ) topology and twofold interpenetrated binodal (5,5)‐c nets with (32.44.52.62)(3.43.52.64) ( 9 ). Therefore, the diverse conformations of the two bis (pyridyl)‐propane‐1,2‐diamines and the feature of different organic dicarboxylate can effectively influence the architectures of these polymers. Powder X‐ray diffraction patterns demonstrate that these bulk solid polymers are pure phase. TG analyses indicate that these polymers have certain thermal stability. Luminescent investigation reveals that the emission maximum of these polymers varies from 402 to 449 nm in the solid state at room temperature. Moreover, 1 , 3 and 5–8 show average luminescence lifetimes from 8.81 to 16.30 ns.  相似文献   

13.
The reaction of stoichiometric MeLi with the 1:1 mixture of (?5‐C5H5)Fe(CO)2I/P(OR)3 (R = Me, Et, and Ph) at ?78°C changes the bonding mode between metal and ring from (?5‐C5H5) to (?4exo‐MeC5H5) and the oxidation state of metal from Fe(II) to Fe(O), the novel complexes (?4exo‐MeC5H5)Fe(CO)2P(C)R)3 being obtained in 45‐57% yields. The reaction of trace MeLi with the 1:1 mixture of (?5‐C5H5)Fe(CO)2I/P(OMe)3 at ?78°C results in 70% yield of the phosphonate complex (?5‐C5H5)Fe(CO)2P(O)(OMe)2 which is an Arbuzov‐like dealkylation product from the cationic intermediate [(?5‐C5H5)Fe(CO)2P(OMe)3+] and the iodide. The amines could assist the Arbuzov‐like dealkylation of [(?5‐C5H5)Fe(CO)2P(OMe)3+] [PF6?] where iron‐carbamoyl intermediates are likely involved in the case of primary amines.  相似文献   

14.
The title complexes, trans‐di­aqua­bis­(quinoline‐2‐carboxyl­ato‐κ2N,O)­cobalt(II)–water–methanol (1/2/2), [Co(C10H6NO2)2(H2O)2]·2CH4O·2H2O, and trans‐di­aqua­bis­(quinoline‐2‐car­box­yl­ato‐κ2N,O)­nickel(II)–water–methanol (1/2/2), [Ni(C10H6NO2)2(H2O)2]·2CH4O·2H2O, are isomorphous and contain CoII and NiII ions at centers of inversion. Both complexes have the same distorted octahedral coordination geometry, and each metal ion is coordinated by two quinoline N atoms, two carboxyl­ate O atoms and two water O atoms. The quinoline‐2‐carboxyl­ate ligands lie in trans positions with respect to one another, forming the equatorial plane, with the two water ligands occupying the axial positions. The complex mol­ecules are linked together by hydrogen bonding involving a series of ring patterns which include the uncoordinated water and methanol mol­ecules.  相似文献   

15.
Reactions of a freshly prepared Zn(OH)2‐2x(CO3)x · yH2O precipitate, phenanthroline with azelaic and sebacic acid in CH3OH/H2O afforded [Zn(phen)(C9H15O4)2] ( 1 ) and [Zn2(phen)2(H2O)2(C10H16O4)2] · 3H2O ( 2 ), respectively. They were structurally characterized by X‐ray diffraction methods. Compound 1 consists of complex molecules [Zn(phen)(C9H15O4)2] in which the Zn atoms are tetrahedrally coordinated by two N atoms of one phen ligand and two O atoms of different monodentate hydrogen azelaato groups. Intermolecular C(alkyl)‐H···π interactions and the intermolecular C(aryl)‐H···O and O‐H···O hydrogen bonds are responsible for the supramolecular assembly of the [Zn(phen)(C9H15O4)2] complexes. Compound 2 is built up from crystal H2O molecules and the centrosymmetric binuclear [Zn2(phen)2(H2O)2(C10H16O4)2] complex, in which two [Zn(phen)(H2O)]2+ moieties are bridged by two sebacato ligands. Through the intermolecular C(alkyl)‐H···O hydrogen bonds and π‐π stacking interactions, the binuclear complex molecules are assembled into layers, between which the lattice H2O molecules are sandwiched. Crystal data: ( 1 ) C2/c (no. 15), a = 13.887(2), b = 9.790(2), c = 22.887(3)Å, β = 107.05(1)°, U = 2974.8(8)Å3, Z = 4; ( 2 ) P1¯ (no. 2), a = 8.414(1), b = 10.679(1), c = 14.076(2)Å, α = 106.52(1)°, β = 91.56(1)°, γ = 99.09(1)°, U = 1193.9(2)Å3, Z = 1.  相似文献   

16.
Some new phosphoramidates were synthesized and characterized by 1H, 13C, 31P NMR, IR spectroscopy and elemental analysis. The structures of CF3C(O)N(H)P(O)[N(CH3)(CH2C6H5)]2 ( 1 ) and 4‐NO2‐C6H4N(H)P(O)[4‐CH3‐NC5H9]2 ( 6 ) were confirmed by X‐ray single crystal determination. Compound 1 forms a centrosymmetric dimer and compound 6 forms a polymeric zigzag chain, both via ‐N‐H…O=P‐ intermolecular hydrogen bonds. Also, weak C‐H…F and C‐H…O hydrogen bonds were observed in compounds 1 and 6 , respectively. 13C NMR spectra were used for study of 2J(P,C) and 3J(P,C) coupling constants that were showed in the molecules containing N(C2H5)2 and N(C2H5)(CH2C6H5) moieties, 2J(P,C)>3J(P,C). A contrast result was obtained for the compounds involving a five‐membered ring aliphatic amine group, NC4H8. 2J(P,C) for N(C2H5)2 moiety and in NC4H8 are nearly the same, but 3J(P, C) values are larger than those in molecules with a pyrrolidinyl ring. This comparison was done for compounds with six and seven‐membered ring amine groups. In compounds with formula XP(O)[N(CH2R)(CH2C6H5)]2, 2J(P,CH2)benzylic>2J(P,CH2)aliphatic, in an agreement with our previous study.  相似文献   

17.
Three palladium (II) complexes with the isonitrosobenzoylacetoneimine (HIBI) ligand, Pd (p‐CH3C6H4IBI)2 (1), Pd (C6H5IBI)2 (2) and Pd2Cl2 (C6H5CH2IBI)2 · CHCl3 (3), were prepared and characterized by IR, Raman and X‐ray diffraction studies. The geometries around the palladium atoms in the complexes 1 and 2 are distorted trans‐PdN4 square planes, and the Schiff base ligands RIBI? are coordinated through their oximo‐nitrogen atoms and imino‐nitrogen atoms. The week Pd…H? C agostic interactions [Pd…H = 0.2764 nm] complete the hexacoordinate environment around palladium in the complex 1. The octahedral deformation of the classical square planar environment of the Pd atom is due to the week Pd…O (1b) interactions [Pd? O (1b) = 0.3157 (9) nm] in the complex 2. The complex 3 is a first example of binuclear complex with isonitrosoketoimine ligands, in which one of oximo groups is coordinated through oximo‐nitrogen and oximo‐oxygen atoms.  相似文献   

18.
The synthesis and characterization of new transition metal complexes of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) with 3‐(2‐hydroxynaph‐1‐ylazo)‐1,2,4‐triazole ( HL1 ) and 3‐(2‐hydroxy‐3‐carboxynaph‐1‐ylazo)‐1,2,4‐triazole ( HL2 ) have been carried out. Their structures were confirmed by elemental analyses, thermal analyses, spectral and magnetic data. The IR and 1H NMR spectra indicated that HL1 and HL2 coordinated to the metal ions as bidentate monobasic ligands via the hydroxyl O and azo N atoms. The UV‐Vis, ESR spectra and magnetic moment data revealed the formation of octahedral complexes [Mn L1 (AcO)(H2O)3] ( 1 ), [Co L1 (AcO)(H2O)3]·H2O ( 2 ), [Mn L2 (AcO)(H2O)3] ( 6 ) and [Co L2 (AcO)(H2O)3] ( 7 ), [Ni L1 (AcO)(H2O)] ( 3 ), [Zn L1 (AcO)(H2O)]·H2O ( 5 ), [Ni L2 (AcO)(H2O)] ( 8 ), [Zn L2 (AcO)(H2O)]·10H2O ( 10 ) have tetrahedral geometry, whereas [Cu L1 (AcO)(H2O)2] ( 4 ) and [Cu L2 (AcO)(H2O)2]·5H2O ( 9 ) have square pyramidal geometry.. The mass spectra of the complexes under EI‐con‐ ditions showed the highest peaks corresponding to their molecular weights, based on the atomic weights of 55Mn, 59Co, 58Ni, 63Cu and 64Zn isotopes; besides, other peaks containing other isotopes distribution of the metal. Kinetic and thermodynamic parameters of the thermal decomposition stages were computed from the thermal data using Coats‐Redfern method. HL2 and complexes 6 – 10 were found to have moderate antimicrobial activities against Staphylococcus aureus (gram positive), Escherichia coli (gram negative) and Salmonella sp bacteria, and antifungal activity against Fusarium oxysporum, Aspergillus niger and Candida albicans. Also, in most cases, metallation increased the activity compared with the free ligand.  相似文献   

19.
Synthesis and Crystal Structure of Ruthenium(II) Complexes with Triazenido and Pentaazadienido Ligands The ruthenium(II) triazenido complex [RuCl(ClC6H4N3C6H4Cl)(p‐cymene)] ( 1 ) is obtained by the reaction of silver bis(p‐chlorphenyl)triazenid with [RuCl2(p‐cymene)]2 in CH2Cl2, and forms air stable, orange yellow crystals. It crystallizes as 1 ·CH2Cl2 in the orthorhombic space group Pbca with the lattice parameters a = 3134.3(3), b = 2105.7(2), c = 769.15(4) pm and Z = 8. In the diamagnetic mononuclear complex 1 the chelating triazenido ligand coordinates with the atoms N(1) and N(3). p‐Cymene binds η6 with its C6 ring. The reaction of the etherphosphane complex [RuCl2(Ph2PCH2C4H7O2)2] with 1, 3‐bis(p‐tolyl)triazenid in THF yields the complex [RuCl(tolyl‐N3‐tolyl)(Ph2PCH2C4H7O2)2] ( 2 ). 2 forms monoclinic, red crystals with the space group P21/c and a = 1521.0(2), b = 1451.8(2), c = 2073.7(2) pm, β = 99.29(1)° and Z = 4. It is air stable and diamagnetic. The triazenide ion coordinates with the atoms N(1) and N(3). One of the two etherphosphane ligands is chelating and coordinates with the P atom and one O atom, while the other ligand binds in a monodentate fashion with its P atom, resulting in a coordination number of six for the RuII. [Ag(tolyl‐N5‐tolyl)]2 reacts in THF with [RuCl2(C6H6)]2 to afford the air stable, diamagnetic pentaazadienido complex [RuCl(tolyl‐N5‐tolyl)(C6H6)] ( 3 ). 3 forms monoclinic, red crystals with the space group P21/c and a = 1462.4(1), b = 1056.51(8), c = 1371.4(1) pm, β = 114.36(1)° and Z = 4. The chelating pentaazadienido ligand coordinates with the atoms N(1) and N(3) at the divalent Ru atom. The benzene molecule binds η6 with its π system.  相似文献   

20.
The coordinating properties of a new bis(pyridylhydrazone) ligand derived from iminodiacetic acid diethyl ester and 2-pyridinecarboxaldehyde (picolinaldehyde) H3Imdp and of the bis(salicylhydrazone) H5Imds and H4MeImds ligands derived, respectively, from iminodiacetic acid diethyl ester and from methyl-iminodiacetic acid diethyl ester and salicylaldehyde were considered, by means of analytical and spectroscopic methods, towards first row transition metal ions. These ligands showed various coordination modes in complexation with Cu(II), Co(II), Mn(II) and Zn(II) ions. In particular, we have synthesized and characterized, by analytical, 1H NMR and IR techniques, tri-, di- and mononuclear metal complexes of formula Co3(HImdp)(NO3)4·2H2O, Cu3(HImdp)(NO3)4·C2H5OH·H2O, Cu3(HImdp)Cl4, Zn2(H3Imdp)(ClO4)4·2H2O, Co3(HImds)Cl2·CH3OH·H2O, Zn2(H3Imds)Cl2·2H2O, Co(H4Imds)NO3·2H2O, Mn(H4Imds)Cl·CH3OH·H2O, Cu(H3Imds)·CH3OH·H2O and Cu(H2MeImds).CH3OH·3H2O. Antibacterial, antifungal and antiprotozoal properties of H5Imds and H3Imdp together with three copper(II) trinuclear species of H5Imds of formula Cu3(HImds)(NO3)2.2CH3OH·2H2O, Cu3(HImds)(ClO4)2.EtOH·2H2O and Cu3(HImds)SO4·4H2O are also discussed. The H5Imds ligand and their trinuclear copper(II) complexes showed good activities versus Trichomonas vaginalis, Staphylococcus epidermidis and Acanthamoeba castellanii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号