首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Ag-impurity effects on the first- and second-order quadrupole interaction (QI) at 23Na site in an isomorphic mixed system, Na1−xAgxNO2 (x=0, 0.0084, 0.026, 0.079, 0.094, 0.16), have been investigated by employing 23Na (I=3/2) magic angle spinning nuclear magnetic resonance (MAS NMR) technique. The central transition (CT) and satellite transition (ST) are simultaneously observed with this system. From the spectral analysis, the quadrupole parameter and its distribution width are obtained as a function of Ag concentration. From the intensity loss of CT MAS centerband and of the envelope function of ST MAS sidebands due to impurities, the range of their influence on the second- and first-order QI is estimated. The estimated ranges contain the second and first neighbouring Na sites from the resonating 23Na nucleus for the first- and second-order QI, respectively.  相似文献   

2.
113Cd magic-angle spinning (MAS) and static NMR spectra are measured using 23 kinds of halogenocadmate crystals with known structures to determine the isotropic chemical shifts (δiso), chemical shift anisotropies (Δδ), and asymmetry parameters η and then to discuss the relationship among these NMR parameters and the halide-anion co-ordination environments around Cd2+. The δiso(MAS) values of halide-anion co-ordination polyhedra of Cd2+ largely change with the kind of halide-anion and the halide-anion co-ordination number. The |Δδ| and η in halogenocadmate crystals is largely dependent on the structure type of crystal, but is independent of the halide-anion co-ordination number of Cd2+.  相似文献   

3.
29Si, 27Al, 1H and 23Na solid-state magic-angle spinning (MAS) nuclear magnetic resonance (NMR) has been used to relate nominal composition, bonding character and compressive strength properties in aluminosilicate inorganic polymers (AIPs). The 29Si chemical shift varies systematically with Si-to-Al ratio, indicating that the immediate structural environment of Si is altering with nominal composition. Fast 1H MAS and 29Si T SiH/T relaxation measurements demonstrated that occluded pore H2O mobility within the disordered cavities is slow in comparison with H2O mobility characteristics observed within the ordered channel structures of zeolites. The 27Al MAS NMR data show that the Al coordination remains predominantly 4-coordinate. In comparison with the 29Si MAS data, the corresponding 27Al MAS line shapes are relatively narrow, suggesting that the AlO4 tetrahedral geometry is largely unperturbed and the dominant source of structural disorder is propagated by large distributions of Si–O bond angles and bond lengths. Corresponding 23Na MAS and multiple-quantum MAS NMR data indicate that Na speciation is dominated by distributions of hydration states; however, more highly resolved 23Na resonances observed in some preparations supported the existence of short-range order. New structural elements are proposed to account for the existence of these Na resonances and an improved model for the structure of AIPs has also been proposed. Authors' address: John V. Hanna, NMR Facility, Institute of Materials and Engineering Science, Lucas Heights Research Laboratories, Australian Nuclear Science and Technology Organisation, Private Mail Bag 1, Menai, NSW 2234, Australia  相似文献   

4.
To clarify the nature of microscopic structural changes of N(CH3)4CdCl3 at high temperatures, the nuclear magnetic resonance (NMR) spectra of the protons and carbons in N(CH3)4CdCl3 were measured. NMR studies of the 1H and 13C spin–lattice relaxation time, T , in the rotating frame were also performed. No changes in the T of 1H and 13C associated with the N(CH3)4 groups were observed at the high-temperature transition from phase I to phase I′. However, the 14N NMR spectra reflected changes in the structural geometry during the transition to phase I′, indicating that this transition is driven by N(CH3)4.  相似文献   

5.
We present new evaluations of phase boundaries in the NaxTiS2 system from electrochemical intercalation and from X-ray and NMR measurements in samples intercalated using the liquid ammonia technique. After a critical discussion of the influence of the method of intercalation on the phase limits we present an extensive NMR study of the system. 23Na quadrupolar coupling determinations support the fact that the low concentration (x < 0.25) phase II is a stage 2 phase. 23Na Knight shift results show that the transition from the Ib trigonal prismatic phase to the Ia trigonal antiprismatic phase with increasing Na concentration takes place with a change in the electronic band structure. The stability of this phase is discussed in terms of the balance between elastic and electronic energies.  相似文献   

6.
In the last decade, magic angle spinning (MAS) NMR has become an extremely important method for studying the structure of inorganic solids. Advances in NMR technology have greatly aided in understanding the structure of catalysts, minerals, clays, ceramics, glasses, etc. Obtaining meaningful MAS spectra of spin-1/2 nuclei such as29Si and31P is relatively straightforward and well understood. In contrast, obtaining meaningful MAS spectra is far from simple with non-integral spin quadrupolar nuclei such as11B (I=3/2),17O (I=5/2),23Na (I=3/2),27Al (I=5/2),69Ga (I=3/2), and71Ga (I=3/2)?to name some of the most commonly studied nuclei. Many additional factors have to be considered. This paper will deal with these factors and the utility of very fast MAS for studying non-integral spin quadrupolar nuclei in inorganic solids.  相似文献   

7.
Results of13C MAS NMR measurements of the Rb x C60 system (x=2.75, 3, 4, 6) and the A6C60 compounds (A=K, Rb, Cs) are presented. Special attention was paid to sample preparation in order to suppress effects of impurities and lattice defects due to imperfect C60 starting material. The13C MAS NMR measurements of the Rb x C60 system demonstrate the usefulness of this method to reveal valuable information about its phase diagram. The existence of underdoped Rb3C60 is proved. Well resolved lines in all investigated A6C60 compounds confirm the orientational order of the C60 ions. An assignment of the signals to the three magnetically inequivalent carbon atom positions in the crystal structure is proposed.  相似文献   

8.
Ethane conversion into aromatic hydrocarbons over Zn-modified zeolite BEA has been analyzed by high-temperature MAS NMR spectroscopy. Information about intermediates (Zn-ethyl species) and reaction products (mainly toluene and methane), which were formed under the conditions of a batch reactor, was obtained by 13C MAS NMR. Kinetics of the reaction, which was monitored by 1H MAS NMR in situ at the temperature of 573 K, provided information about the reaction mechanism. Simulation of the experimental kinetics within the frames of the possible kinetic schemes of the reaction demonstrates that a large amount of methane evolved under ethane aromatization arises from the stage of direct ethane hydrogenolysis.  相似文献   

9.
One- and two-dimensional static and magic-angle spinning (MAS) exchange NMR experiments for quantifying slow (τc> 1 ms) molecular reorientation dynamics are analyzed, emphasizing the extent to which motional correlation times can be extracteddirectlyfrom the experimental data. The static two-dimensional (2D) exchange NMR experiment provides geometric information, as well as exchange time scales via straightforward and model-free application of Legendre-type orientational autocorrelation functions, particularly for axially symmetric interaction tensors, as often encountered in solid-state2H and13C NMR. Under conditions of MAS, increased sensitivity yields higher signal-to-noise spectra, with concomitant improvement in the precision and speed of correlation time measurements, although at the expense of reduced angular (geometric) resolution. For random jump motions, one-dimensional (1D)exchange-inducedsidebands (EIS)13C NMR and the recently developed ODESSA and time-reverse ODESSA experiments complement the static and MAS two-dimensional exchange NMR experiments by providing faster means of obtaining motional correlation times. For each of these experiments, the correlation time of a dynamic process may be obtained from a simple exponential fit to the integrated peak intensities measured as a function of mixing time. This is demonstrated on polycrystalline dimethylsulfone, where the reorientation rates from EIS, ODESSA, time-reverse ODESSA, and 2D exchange are shown to be equivalent and consistent with literature values. In the analysis, the advantages and limitations of the different methods are compared and discussed.  相似文献   

10.
Two-dimensional 27Al multiple-quantum magic angle spinning (MQMAS) NMR experiments are used to study mixtures of bayerite (α-Al(OH)3) with either silicic acid (SiO2.nH2O) or silica gel (SiO2) that have been ground together for varying lengths of time. This mechanical treatment produces changes in the 27Al MAS and MQMAS NMR spectra that correspond to the formation of new Al species. Mean values of the quadrupolar interaction (PQ) and isotropic chemical shift (δCS) are extracted from the two-dimensional 27Al NMR spectra for each of these species. The presence of significant distributions of both 27Al quadrupolar and chemical shift parameters is demonstrated and the effect of grinding duration on the magnitudes of these distributions is discussed.  相似文献   

11.
The NMR satellite frequencies were measured as a function of temperature in the normal high-temperature phase for 87Rb in Rb2ZnBr4 and Rb2ZnCl4 and for 35Cl in betaine calciumchloride dihydrate. Approaching the respective normal-incommensurate phase transition an anomalous shift of the NMR frequency is observed for the first two cases. This effect is ascribed to the increasing order parameter fluctuations. The experimental data are compared to calculations which relate the observed behaviour of the NMR frequencies to the non-classical critical behaviour of the substances under investigation. Received 6 August 1998  相似文献   

12.
Herein we investigated the electronic properties of layered transition-metal oxides Na2Ti2Sb2O by23Na nuclear magnetic resonance(NMR)measurement.The resistivity,susceptibility and specific heat measurements show a phase transition at approximately 114 K(TA).No splitting or broadening in the central line of23Na NMR spectra is observed below and above the transition temperature indicating no internal field being detected.The spin-lattice relaxation rate divided by T(1/T1T)shows a sharp drop at about 110 K which suggests a gap opening behavior.Below the phase transition temperature zone,1/T1T shows Fermi liquid behavior but with much smaller value indicating the loss of large part of electronic density of states(DOS)because of the gap.No signature of the enhancement of spin fluctuations or magnetic order is found with the decreasing temperature.These results suggest a commensurate charge-density-wave(CDW)phase transition occurring.  相似文献   

13.
71Ga magic-angle spinning (MAS) nuclear magnetic resonance (NMR) has been used to characterize the structural evolution of nanocrystalline Ga2O3 samples prepared by sol-gel and ball-milling techniques. 29Si and 27Al MAS NMR have also been used to characterize silica and alumina Zener pinning phases. 71Ga NMR parameters are reported for the α- and β-Ga2O3 phases, and more tentatively for the δ-Ga2O3 phase. By simulating the octahedrally coordinated gallium NMR line of β-Ga2O3 using Gaussian distributions in χQ, the extent of disorder in the Ga2O3 crystallites has been quantified. The ball-milled samples contain much more inherent disorder than the sol-gel samples in the nano-phase, which was observed from simulations of the 71Ga MAS NMR spectra. The silica pinning phase produced highly crystalline and densely aggregated nanocrystalline Ga2O3, as well as the smallest nanocrystal sizes. Authors' address: Mark E. Smith, Department of Physics, University of Warwick, Coventry CV4 7AL, UK  相似文献   

14.
Anomalous H/D isotope effects were detected in the 1H MAS NMR spectra of piperidinium p-chlorobenzoate (C5H10NH $_{2}{^{+}}\cdot $ ClC6H4COO???) upon deuterium substitution of hydrogen atoms which form two kinds of N-H?O H-bonds in the crystal; in contrast to these spectra, only slight chemical shifts were recorded in 13C CP/MAS NMR spectra. 2H NMR spectrum of the deuterated sample show quadrupole coupling constants of 148 and 108 kHz, and reveal that there are a few motions contributing to the electric-field modulation of the 2H nucleus. The 1H MAS NMR spectra of piperidinium p-chlrobenzoate-d 16 (C5D10ND $_{2}{^{+}}\cdot $ ClC6D4COO???) and -d 14 (C5D10NH $_{2}{^{+}}\cdot $ ClC6D4COO???) revealed that the change in the envelope is caused by chemical shifts of each signal upon deuteration. Calculations based on the density-functional-theory showed that the N-H distance along the crystallographic a-axis mainly contributes to the anomalous isotope effects on 1H MAS NMR envelopes.  相似文献   

15.
NMR and dielectric studies have been performed on NaNO2 loaded in mesoporous matrices of MCM-41 and SBA-15 with pore sizes of 20, 37, and 52 Å. The spin-lattice relaxation rate and 23Na NMR line shape, as well as the complex impedance, were measured within a broad temperature interval including the ferroelectric phase transition in bulk NaNO2. Two different phases of sodium nitrite, the crystalline and melt phases, are shown to coexist under conditions of a restricted geometry. The crystalline phase undergoes a ferroelectric phase transition. The melt fraction increases with temperature. The existence of two phases accounts for all experimental data on NaNO2 under conditions of a restricted geometry.  相似文献   

16.
In solid-state NMR studies of minerals and ion conductors, quadrupolar nuclei like 7Li, 23Na or 133Cs are frequently situated in close proximity to fluorine, so that application of 19F decoupling is beneficial for spectral resolution. Here, we compare the decoupling efficiency of various multi-pulse decoupling sequences by acquiring 19F-decoupled 23Na-NMR spectra of cryolite (Na3AlF6). Whereas the MAS spectrum is only marginally affected by application of 19F decoupling, the 3Q-filtered 23Na signal is very sensitive to it, as the de-phasing caused by the dipolar interaction between sodium and fluorine is three-fold magnified. Experimentally, we find that at moderate MAS speeds, the decoupling efficiencies of the frequency-swept decoupling schemes SWf-TPPM and SWf-SPINAL are significantly better than the conventional TPPM and SPINAL sequences. The frequency-swept sequences are therefore the methods of choice for efficient decoupling of quadrupolar nuclei with half-integer spin from fluorine.  相似文献   

17.
NMR and dielectric studies of NaNO2 loaded into an SBA-15 mesoporous matrix are reported. The spin-lattice relaxation rate and the 23Na NMR line shift, as well as the permittivity, were measured within a broad temperature interval including the ferroelectric phase transition in NaNO2. The phase transition temperature of sodium nitrite in as-prepared samples was shown to differ substantially from that characteristic of a bulk crystal. The permittivity grows strongly in the vicinity of the phase transition. Heating a sample causes the properties of NaNO2 embedded in pores to gradually approach those of bulk crystals.  相似文献   

18.
The relationship between structure and nonlinear optical properties in LiCsB6O10 is characterized using single-crystal nuclear magnetic resonance (NMR) and magic-angle spinning (MAS) NMR. Although the quadrupole parameters for B(1) and B(2) sites were obtained using single-crystal NMR, the T 1 values for these atomic sites could not be distinguished in this way. Thus, the structural nature of lithium and boron sites in LiCsB6O10 was investigated using MAS NMR. B(1) and B(2) sites could be distinguished based on the spectrum and T obtained from 11B MAS NMR. In addition, the T 1 and T values and activation energies for 7Li and 11B are compared. No significant changes were seen in the T at the lithium and boron nuclei in LiCsB6O10.  相似文献   

19.
The applicability, reliability, and repeatability of 29Si MAS NMR for determination of the quantities of alite (Ca3SiO5) and belite (Ca2SiO4) in anhydrous Portland cement was investigated in detail for 11 commercial Portland cements and the results compared with phase quantifications based on powder X-ray diffraction combined with Rietveld analysis and with Taylor–Bogue calculations. The effects from paramagnetic ions (Fe3+) on the spinning sideband intensities, originating from dipolar couplings between 29Si and the spins of the paramagnetic electrons, were considered and analyzed in spectra recorded at four magnetic fields (4.7–14.1 T) and this has led to an improved quantification of alite and belite from 29Si MAS NMR spectra recorded at “high” spinning speeds of νR=12.0–13.0 kHz using 4 or 5 mm rotors. Furthermore, the impact of Fe3+ ions on the spin-lattice relaxation was studied by inversion-recovery experiments and it was found that the relaxation is overwhelmingly dominated by the Fe3+ ions incorporated as guest-ions in alite and belite rather than the Fe3+ sites present in the intimately mixed ferrite phase (Ca2AlxFe2−xO5).  相似文献   

20.
125Te static nuclear magnetic resonance (NMR) and 23Na and 125Te magic angle spinning (MAS) NMR have been used, in conjunction with X-ray diffraction, to examine the structure and crystallisation behaviour of glasses of composition xNa2O.(1-x)TeO2 (0.075 x 0.4). The MAS NMR 23Na spectra from the glasses are broad and featureless but shift by approximately +5 ppm with increased x, i.e. as the system becomes more ionic. The static 125Te NMR spectra show an increase in axial symmetry with increasing x, indicating a shift from predominantly [TeO4] to [TeO3] structural units. The 23Na and 125Te spectra from the crystallised samples have been fitted to obtain information on the sites in the metastable crystal phases, which are the first to form on heating and which are therefore more closely related to the glass structure than thermodynamically stable crystal phases. New sodium tellurite phases are reported, including a sodium stabilised, face centred cubic phase related to delta-TeO2; a metastable form of Na2Te4O9 containing 3 sodium and 4 tellurium sites; and a metastable form of Na2Te2O5 containing 2 sodium sites. There is evidence of oxidation of TeIV to TeVI occurring in glasses with high values of x and, at x=0.40 and 0.50 (outside the glass forming range), some sodium metatellurate (Na2TeO4) is formed at the same time as sodium metatellurite (Na2TeO3). The 125Te shift is very sensitive to environment within the sodium tellurite system, covering more than 320 ppm, with anisotropies varying from 640 to 1540 ppm. The lack of features in the 125Te spectra of the glass phases, combined with the large shift range and high but variable anisotropy, means than it is not possible to obtain a unique fit to any presumed species present. Furthermore, the chemical shift anisotropy parameters for three of the four Te sites in the Na2Te4O9 phase are found to lie outside the range used for previous simulations of glass spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号