首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
高亚声速湍流喷流气动噪声数值分析   总被引:3,自引:1,他引:2  
冯峰  郭力  王强 《力学学报》2016,48(5):1049-1060
为适应航空噪声管制规定要求,发动机喷流噪声控制成为目前气动声学研究中的重要课题,预测分析喷流噪声辐射并揭示其产生机理将为噪声控制奠定基础.采用高精度并行LES(large eddy simulation)方法计算分析马赫数0.9高亚声速喷流的湍流演化和气动噪声现象.首先,仔细验证喷流LES湍流场计算保真性,并分析流场中不同尺度涡结构的演化形态.其次,利用可穿透面FW-H(Ffowcs Williams and Hawkings)方法外推喷流近场声源数据获得精确声辐射远场,进而分析声场主导声模态特性.最后,通过分析声源机制、分离声模态等方法研究势流核末端大尺度拟序涡运动演化形成的低波数波包在噪声主导声模态产生中的重要作用.数值结果表明LES结合可穿透面FW-H方法可精确预测高亚声速喷流的流场及声场特征,且数值分析揭示涡环对并形成的大尺度拟序结构在喷流中心线上沿径向融合,产生了在远场低方位角占优的主导声模态,并构成强指向性声场,噪声峰值方位角约为30°.   相似文献   

2.
The self-excited oscillation of a large aspect ratio planar jet impinging on a flat plate is investigated experimentally at a single transonic jet velocity to clarify the effect of varying the jet thickness on pattern of jet oscillation and frequency of resulting acoustic tone. The study has been performed for a series of jet thicknesses, 1 mm to 4 mm, each of which is tested for the complete range of plate position, i.e. impingement distance, over which acoustic tones are generated. The results reveal that the jet oscillation is controlled by a fluid-dynamic mechanism for small impingement distances, where the hydrodynamic flow instability controls the jet oscillation without any coupling with local acoustic resonances. At larger impingement distances, a fluid-resonant mechanism becomes dominant, in which one of the various hydrodynamic modes of the jet couples with one of the resonant acoustic modes occurring between the jet nozzle and the impingement plate. Within the fluid-resonant regime, the acoustic tones are found to be controlled by the impingement distance, which is the length scale of the acoustic mode, with the jet thickness having only minor effects on the tone frequency. Flow visualization images of the jet oscillation pattern at a constant impingement distance show that the oscillation occurs at the same hydrodynamic mode of the jet despite a four-fold increase in its thickness. Finally, a feedback model has been developed to predict the frequency of acoustic tones, and has been found to yield reasonable predictions over the tested range of impingement distance and nozzle thickness.  相似文献   

3.
Spatial instability waves associated with lowfrequency noise radiation at shallow polar angles in the chevron jet are investigated and are compared to the round counterpart. The Reynolds-averaged Navier–Stokes equations are solved to obtain the mean flow fields, which serve as the baseflow for linear stability analysis. The chevron jet has more complicated instability waves than the round jet, where three types of instability modes are identified in the vicinity of the nozzle, corresponding to radial shear, azimuthal shear,and their integrated effect of the baseflow, respectively. The most unstable frequency of all chevron modes and round modes in both jets decrease as the axial location moves downstream. Besides, the azimuthal shear effect related modes are more unstable than radial shear effect related modes at low frequencies. Compared to a round jet, a chevron jet reduces the growth rate of the most unstable modes at downstream locations. Moreover, linearized Euler equations are employed to obtain the beam pattern of pressure generated by spatially evolving instability waves at a dominant low frequency St = 0.3, and the acoustic efficiencies of these linear wavepackets are evaluated for both jets. It is found that the acoustic efficiency of linear wavepacket is able to be reduced greatly in the chevron jet, compared to the round jet.  相似文献   

4.
In this paper we present the experimental results of a detailed investigation of the flow and acoustic properties of a turbulent jet with Mach number 0·75 and Reynolds number 3·5 103. We describe the methods and experimental procedures followed during the measurements, and subsequently present the flow field and acoustic field. The experiment presented here is designed to provide accurate and reliable data for validation of Direct Numerical Simulations of the same flow. Mean Mach number surveys provide detailed information on the centreline mean Mach number distribution, radial development of the mean Mach number and the evolution of the jet mixing layer thickness both downstream and in the early stages of jet development. Exit conditions are documented by measuring the mean Mach number profile immediately above the nozzle exit. The fluctuating flow field is characterised by means of a hot-wire, which produced radial profiles of axial turbulence at several stations along the jet axis and the development of flow fluctuations through the jet mixing layer. The axial growth rate of the jet instabilities are determined as function of Strouhal number, and the axial development of several spectral components is documented. The directivity of the overall sound pressure level and several spectral components were investigated. The spectral content of the acoustic far field is shown to be compatible with findings of hot-wire experiments in the mixing layer of the jet. In addition, the measured acoustic spectra agree with Tam’s large-scale similarity and fine-scale similarity spectra (Tam et al., AIAA Pap 96, 1996).  相似文献   

5.
Results are presented of experimental investigations of the local effect of acoustic oscillations of different frequency and constant intensity on the root part of a nonisothermal axisymmetric subsonic turbulent jet escaping from a gas jet atomizer at a different velocity in the S = 0.053–3.84 range of Strouhaille numbers. Data have been obtained indicating the presence of unstable escape modes of a subsonic turbulent jet in an acoustic field; experimental dependences are presented of the relative aperture of the turbulent jet flowing in an acoustic field as a function of various parameters.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 58–62, January–February, 1972.The author is grateful to A. S. Ginevskii and B. S. Burikov for discussing the results of this paper, and also to A. S. Modnov and R. A. Arkhipova for assistance in conducting and processing the experiments.  相似文献   

6.
为了通过超高速撞击声发射信号识别蜂窝结构受空间碎片撞击后的损伤状态,提出一种基于小波的损伤特征提取方法。采用超高速撞击声发射技术,以铝合金蜂窝板为研究对象,通过超高速撞击实验获取实验信号。分析超高速撞击声发射信号的时频特征及板波模态等特征,采用Daubechies小波变换将信号中模态分离,根据小波系数计算各尺度小波能量分数及小波能量熵特征,分析各特征参数与损伤间的关系,并通过Kruskal-Wallis检验方法验证各特征值对损伤识别的贡献。结果表明:小波能量分数和小波能量熵具有一定的损伤模式分类能力;250 kHz以上的小波能量分数具有良好的损伤模式分类能力;非超声部分的低频信号对损伤识别存在干扰。  相似文献   

7.
The emitted noise from round jets is reduced using linear feedback controllers designed using structural sensitivity analysis. Linear global modes inform the selection and placement of the controller, and Navier–Stokes simulations are used to demonstrate effectiveness in a Mach-1.5 cold axisymmetric jet and in a Mach-0.9 cold turbulent jet. In both jets, each fitted with a cylindrical nozzle, the control reduces the radiated noise and modifies the baseflow in a way that enhances the relative amplitudes of low-frequency St0.05 global modes that do not have significant support in the acoustic field.  相似文献   

8.
A modal spectrum technique was used to study coherent instability modes (both axisymmetric and azimuthal) triggered by naturally occurring disturbances in a circular jet. This technique was applied to a high Reynolds number (400,000) jet for both untripped (transitional) and tripped (turbulent) nozzle exit boundary layers, with both cases having a core turbulence level of 0.15%. The region up to the end of the potential core was dominated by the axisymmetric mode, with the azimuthal modes dominating further downstream. The growth of the azimuthal modes was observed closer to the nozzle exit for the jet with a transitional boundary layer. Whether for locally parallel flow or slowly diverging flow, even at low levels of acoustic forcing, the inviscid linear theory is seen to be inadequate for predicting the amplitude of the forced mode. In contrast, the energy integral approach reasonably predicts the evolution of the forced mode.  相似文献   

9.
The results of an experimental study of the effects of different nozzle heads on turbulent jet noise are analyzed. A configuration of four cylindrical heads, tabbed heads, and chevron nozzles are considered and the decreases in the acoustic-mechanical efficiency of the jet (acoustic power reduction) for jets exposed to different modes of action are compared.It is shown that the effects of tabbed and cylindrical heads, as well as of chevrons, share a common property which is associated with the occurrence of vorticity in the jet source and can be described on the basis of a unified criterion characterizing the action on both the jet flow structure and the jet noise.  相似文献   

10.
Active control of fundamental two- and three-dimensional amplified modes in an axisymmetric jet is presented. This is done by introducing localized acoustic disturbances produced by an azimuthal array of miniature speakers placed in the close proximity of the jet lip on the exit face. The independent control of each speaker output allows different azimuthal amplitude and phase distributions of periodic input pressure disturbances. Coupled with this was the development and use of a circular smoke-wire for visualizing shear layer modes around the complete jet circumference.  相似文献   

11.
Evolution of coherent structures and their interaction dynamics are educed in the near field of an acoustically excited basic annular jet using conditional sampling technique based on a multiple triggering criterion to detect the two dominating modes of structure pattern. Acoustic excitation is applied with an aim to better organize the phase alignment of initial rolling and pairing process in the outer shear layer. Negligible modification of the time-averaged flow field results from the excitation. The educed coherent vorticities show that the two modes of evolution are due to the corresponding two modes of shedding pattern of the wake structures from the centerbody, namely the mode one wake and the mode zero wake. In both modes, the shear-layer mode jet vortex rings in the outer layer are perturbed by the shedding of wake structures in the inner region and interaction involving primary merging of three successive jet vortex rings or their partial circumferential sections is found. This results in the formation of wake-induced structures of the corresponding mode pattern, which possesses concentration of coherent vorticity and fluid circulation over a large spatial extent at 1 < x/D < 2. Secondary interactions, such as vortex tearing, are also observed.  相似文献   

12.
冲击射流的噪声抑制对于研究短程起飞和垂直起降飞行器(STOVL)是极其重要的. 为了研究冲击射流噪声尤其是冲击单音与涡结构尺度之间的关系以及反馈声波的上传方向,采用小波分析技术和``声类比'方法来分析冲击单音的传播方向. 研究中用到的冲击射流的速度场由PIV技术给出,冲击单音的频率通过噪声场的测量获得. 利用双正交小波变换来提取冲击射流速度场中含有的波动信息,结合冲击单音的频率特性对噪声场进行研究.研究结果表明大尺度结构是冲击单音的``拟声源'. 此外,还可以看出大尺度涡结构产生的反馈声波一部分向喷嘴出口处传播,形成反馈环;另一部分反馈声波向四周传播.   相似文献   

13.
 The mean velocity field of a 30° inclined wall jet has been investigated using both hot-wire and laser Doppler anemometry (LDA). Provided that the nozzle aspect ratio is greater than 30 and the inclined wall angle (β) is less than 50°, LDA measurements for various β show that the reattachment length is independent of the nozzle aspect ratio and the nozzle exit Reynolds number (in the range 6670–13,340). There is general agreement between the reattachment lengths determined by LDA and those determined using wall surface oil film visualisation technique. The role of coherent structures arising from initial instabilities of a 30° wall jet has been explored by hot-wire spectra measurements. Results indicate that the fundamental vortex roll-up frequency in both the inner and outer shear layer corresponds to a Strouhal number (based on nozzle exit momentum thickness and velocity) of 0.012. The spatial development of instabilities in the jet has been studied by introducing acoustic excitation at a frequency corresponding to the shear layer mode. The formation of the fundamental and its first subharmonic has been identified in the outer shear layer. However, the development of the first subharmonic in the inner shear layer has been severely suppressed. Distributions of mean velocities, turbulence intensities and Reynolds shear stress indicate that controlled acoustic excitation enhances the development of instabilities and promotes jet reattachment to the wall, resulting in a substantially reduced recirculation flow region. Received: 24 November 1998/Accepted: 24 August 1999  相似文献   

14.
 Coherent structures in the near field of a three-dimensional jet have been investigated. Experiments were carried out for a free jet issuing from a square nozzle using a water channel. Instantaneous velocity profiles were obtained in the axial and radial directions by using an ultrasonic velocity profile (UVP) monitor. Axial variations of dominant time-scales of vortex structures were examined from one-dimensional wavelet spectra. Wavenumber-frequency spectra were calculated by two-dimensional Fourier transform along the axial direction in a mixing layer, and it was found that a convective velocity of flow structures was nearly constant independently of their scales in space and time. Coherent structures in the axial direction were investigated in terms of proper orthogonal decomposition (POD). Eigenfunctions are similar to a sinusoidal wave, and reconstructed velocity fields by the lower-order and higher-order POD modes demonstrate large-scale and smaller-scale coherent structures, respectively. Received: 8 May 2000/Accepted: 23 January 2001 Published online: 29 November 2001  相似文献   

15.
张鑫  王勋年 《力学学报》2023,55(2):285-298
正弦交流介质阻挡放电等离子体流动控制技术是基于等离子体激励的主动流动控制技术,具有响应时间短、结构简单、能耗低、不需要额外气源装置等优点,在飞行器增升减阻、抑振降噪、助燃防冰等方面具有广阔的应用前景.针对“激励器消耗的大部分能量尚未被挖掘利用、诱导流场的完整演化过程尚未完全掌握、诱导流场的演化机制尚不明确”这三方面问题,本文首先从激励器诱导流场的空间结构、时空演化过程、演化机制三个方面回顾总结了激励器诱导流场的研究进展.在诱导流场空间结构方面,发现了高电压激励下诱导射流的湍流特性,辨析了壁面拟序结构与无量纲激励参数之间的关联机制;从激励器诱导声能方面挖掘出了激励器潜在的能量,发现了“等离子体诱导超声波与诱导声流”的新现象,提出了声激励机制;在时空演化过程方面,阐明了激励器诱导流场从薄型壁射流发展为“拱形”射流、再演变为启动涡,最终形成准定常射流的完整演化过程;在演化机制方面,结合声学特性提出了以“升推”为主的诱导流场演化机制.其次,围绕激励器诱导流场,进一步凝练出下一步研究重点,为突破等离子体流动控制技术瓶颈,打通“概念创新—技术突破—演示验证”的创新链路,实现工程应用提供支撑.  相似文献   

16.
The self-excitation mechanism of the acoustic diametral modes of an axisymmetric internal cavity–duct system is studied for a Mach number range up to 0.4. The effect of cavity dimensions on the excitation mechanism is investigated experimentally and numerically. Experiments are conducted on three cavity depths and six cavity lengths for each depth. Numerical simulations of the mode shapes are also performed to determine the effect of cavity dimensions on the particle velocity field of the diametral modes. For all the tested configurations, the diametral modes are strongly excited at relatively low Mach numbers (as low as 0.1). The pulsation amplitude at resonance is found to increase as the cavity becomes shorter or deeper, relative to the main pipe diameter. The test results provide new insights into the excitation mechanism of diametral modes, the effect of the cavity length to depth ratio on the Strouhal numbers of acoustic resonances caused by various shear-layer modes of the cavity, and into the effect of the particle velocity field of the acoustic modes on the mode selectivity mechanism which determines the dominant acoustic mode during resonance.  相似文献   

17.
Interactions between large coherent structures are visualized with both schlieren photography in two air jets and dye photography in a water jet. The density difference needed for the schlieren technique is provided by an electrically heated wire ring surrounding the jet. External forcing with either single axisymmetric, single non-symmetric, combined axisymmetric or combined non-symmetric modes was applied. It was found that forcing the jet with a pair of different spinning modes leads to azimuthal distortions of the mean flow. This observation confirms and explains existing hotwire data. Simultaneous excitation with two axisymmetric modes may produce structures of higher modes or even cause structurally undistinguishable development. Streamwise structures are observed both in the unforced jet and in the axisymmetrically forced jet. They do not seem to be caused by a Görtier instability from the concave curvature of the conventional nozzle, since they were also found in a jet flow from a specially designed nozzle with only convex contraction surface.Supported in part by the National Science Foundation under Grant No. MSM 8900086 and by the Deutsche Forschungsgemeinschaft DFG, Fi178/34-1  相似文献   

18.
The aeroacoustic noise generated by a high speed, planar gas jet impinging on a flat plate is investigated experimentally. The jet used in this study is typical of those commonly found in industrial applications such as in various coating control and heat transfer processes. Normal jet impingement on the plate is found to generate strong acoustic tones over a wide range of impingement distances and jet velocities. The characteristics of these tones, as a function of the jet velocity and impingement distance, are quantified. Phase and amplitude measurements of the pressure fluctuations on the impingement plate indicate that the acoustic tones are generated by an antisymmetric instability mode of the jet oscillation. The effect of plate inclination in both the transverse and span-wise directions, with respect to the incident jet, is also studied. The jet-plate tone is found to be much more sensitive to changes in the span-wise plate inclination than to changes in the transverse inclination, but in both cases, a complete suppression of the tone is found to be possible.  相似文献   

19.
 Removal of soot particles from a static chamber by an intense acoustic field is investigated. Combustion of a solid fuel fills a rectangular chamber with small soot particles, which sediment very slowly. The chamber is then irradiated by an intense acoustic source to produce a three dimensional standing wave field in the chamber. The acoustic excitation causes the soot particles to agglomerate, forming larger particles which sediment faster from the system. The soot also forms 1–2 cm disks, with axes parallel to the axis of the acoustic source, which are levitated by the sound field at half-wavelength spacing within the chamber. Laser extinction measurements are made to determine soot volume fractions as a function of exposure time within the chamber. The volume fraction is reduced over time by sedimentation and by particle migration to the disks. The soot disks are considered to be a novel mechanism for particle removal from the air stream, and this mechanism has been dubbed acoustic filtration. An experimental method is developed for comparing the rate of soot removal by sedimentation alone with the rate of soot removal by sedimentation and acoustic filtration. Results show that acoustic filtration increases the rate of soot removal by a factor of two over acoustically-induced sedimentation alone. Received: 26 August 1996/Accepted: 31 March 1997  相似文献   

20.
A jet from an axisymmetric convergent nozzle is studied at ideal and underexpanded conditions using velocity and acoustic data. Two particle imaging velocimetry setups, a 10 kHz system and a multi-camera configuration, were used to capture near-field velocities while simultaneously sampled with far-field microphones. Proper orthogonal decomposition is performed on the velocity data to extract modes representative of physical processes in the flow. The decomposed velocity fields are then correlated with acoustic data to identify modes related to specific noise spectra. Specifically, four modes are associated with noise production in the sonic plume. Selective flow-field reconstruction is carried out, revealing interesting dynamics associated with loud flow states. In the supersonic case, screech-containing and turbulent mixing modes are isolated. The spatial modes of each data set are then compared for similarities in structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号