首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A modal spectrum technique was used to study coherent instability modes (both axisymmetric and azimuthal) triggered by naturally occurring disturbances in a circular jet. This technique was applied to a high Reynolds number (400,000) jet for both untripped (transitional) and tripped (turbulent) nozzle exit boundary layers, with both cases having a core turbulence level of 0.15%. The region up to the end of the potential core was dominated by the axisymmetric mode, with the azimuthal modes dominating further downstream. The growth of the azimuthal modes was observed closer to the nozzle exit for the jet with a transitional boundary layer. Whether for locally parallel flow or slowly diverging flow, even at low levels of acoustic forcing, the inviscid linear theory is seen to be inadequate for predicting the amplitude of the forced mode. In contrast, the energy integral approach reasonably predicts the evolution of the forced mode.  相似文献   

2.
The performance of a small high-speed liquid jet apparatus is described. Water jets with velocities from 200 to 700 m/s were obtained by firing a deformable lead slug from an air rifle into a stainless steel nozzle containing water sealed with a rubber diaphragm. Nozzle devices using the impact extrusion (IE) and cumulation (CU) methods were designed to generate the jets. The effect of the nozzle diameter and the downstream distance on the jet velocity is examined. The injection sequences are visualized using both shadowgraphy and schlieren photography. The difference between the IE and CU methods of jet generation is found.  相似文献   

3.
Large-eddy simulations of the flow field around twin three-dimensional impinging jets were carried out to simulate the near-ground hover configuration of a vertical takeoff and landing (VTOL) aircraft. Both the impinging jet and the upwash caused by the collision of the wall jets are modeled in this study. The evolution of the vortical structures in the impinging jet flow field, due to the introduction of axisymmetric and azimuthal perturbations at the jet exit, has been investigated. The vortical structures formed in the jet shear layer due to azimuthal forcing, show significant three-dimensional vortex stretching effects when compared to the structures formed during axisymmetric forcing. Breakdown of the large-scale structures into smaller vortices also occurs much earlier during azimuthal forcing. When compared to the upwash formed during axisymmetric forcing, the azimuthally perturbed jet forms an upwash that is less coherent and results in a weaker upload or lift-off force on the aircraft undersurface. Comparison with available experimental data indicates good agreement for the centerline velocity decay, the wall pressure variation and the phase speed of the vortical structures.  相似文献   

4.
Miniature electromagnetic flap actuators are developed and mounted on the periphery of the nozzle exit of an axisymmetric jet to induce various flow modes and enhance mixing processes. It is demonstrated that the flap actuators can significantly modify the large-scale vortical structures. In particular, when the flaps are driven in anti-phase on either side of the jet, alternately inclined and bent vortex rings are generated, and the jet bifurcates into two branches. Since the vortex rings are formed at the very vicinity of the nozzle exit, the bifurcation is accomplished as close as x/D=3.  相似文献   

5.
An experimental study is presented of the vortex structures that appear in the shear layer of laminar, co-flowing air jets subjected to strong axial forcing. A set of flow visualisation experiments has been performed to elucidate the nature of the different structures and the mechanisms leading to their appearance and further interactions. The axial forcing sets the axisymmetric instability to prescribed values of amplitude and frequency (and thus wavelength) and produces a strong effect in the lateral spreading of the inner jet. It is shown that the near field development of the flow can be explained via inviscid vortex dynamics arguments, involving three vortex structures. Due to the strong axial forcing, all these vortices already appear as developed concentrations of vorticity in the surroundings of the nozzle exit. An azimuthal perturbation is added to the flow in the form of a lobed nozzle exit, in order to lock the azimuthal organisation of the vortices. The results are discussed and some representative configurations are examined. Each configuration appears for a given range of the forcing parameters. A tentative model of the near-field vortex dynamics is developed, but quantitative measurements are still necessary.  相似文献   

6.
Studies on stability and dynamics of a swirling jet   总被引:2,自引:0,他引:2  
The temporal instability and nonlinear evolution of the swirling jet near a nozzle exit are studied by both normal-mode method and three dimensional direct numerical simulation (3D DNS). It is found that the swirl enhances the maximum linear growth rates for negative helical modes, while decreases the growth rate for axisymmetric mode. Numerical simulations show that the evolution in early stage is compared well with the linear stability theory. In nonlinear stage, the swirl promotes the breakup of 3D large scale organized structures in the flow into small eddies. The project supported by the National Natural Science Foundation of China (19772052)  相似文献   

7.
The regular and random mixing structures in a turbulent diffusion flame were investigated using the quantitative, dynamic crossed-beam schlieren method. Evidence was found close to the nozzle relating to the vortexlike structure of eddies surrounding the central fuel jet flow. The observations also make possible resolution of turbulent intensity, scales, convection, and spectra within the diffusion flame without the use of seeding or intrusion of measuring probes. It is found that length scales and other turbulence parameters in the diffusion flame progressively revert to values similar to those expected and observed in scalar passive mixing as the combustion reaction intensity reduces with axial distance from the nozzle system.  相似文献   

8.
Experimental results on the shock structure of dual co-axial jets are presented. The effects of the geometric parameters of the inner nozzle, jet static pressure ratio (ratio of the exit plane static pressures of the inner and outer nozzles) and the ratio of outer to inner nozzle throat area on the shock structure were studied. A superimposed outer and inner jet structure was observed in the schlieren photographs. The inner flow is compressed by the outer flow resulting in the formation of a Mach disc and an exit shock. A parameter incorporating the effect of Mach number of the inner nozzle and jet static pressure ratio was found to correlate the observations regarding the Mach disc location.  相似文献   

9.
A jet from an axisymmetric convergent nozzle is studied at ideal and underexpanded conditions using velocity and acoustic data. Two particle imaging velocimetry setups, a 10 kHz system and a multi-camera configuration, were used to capture near-field velocities while simultaneously sampled with far-field microphones. Proper orthogonal decomposition is performed on the velocity data to extract modes representative of physical processes in the flow. The decomposed velocity fields are then correlated with acoustic data to identify modes related to specific noise spectra. Specifically, four modes are associated with noise production in the sonic plume. Selective flow-field reconstruction is carried out, revealing interesting dynamics associated with loud flow states. In the supersonic case, screech-containing and turbulent mixing modes are isolated. The spatial modes of each data set are then compared for similarities in structures.  相似文献   

10.
The problem of an axisymmetric gas flow in a supersonic nozzle and in the jet escaping from the nozzle to a quiescent gas is solved within the framework of Navier-Stokes equations. The calculated pressure distribution is compared with that measured in the jet by a Pitot tube. The influence of the jet pressure ratio, Reynolds number, and half-angle of the supersonic part of the nozzle on nozzle flow and jet flow parameters is studied. It is shown that the distributions of gas-dynamic parameters at the nozzle exit are nonuniform, which affects the jet flow. The flow pattern for an overexpanded jet shows that jet formation begins inside the nozzle because of boundary-layer displacement from the nozzle walls. This result cannot be obtained with the inviscid formulation of the problem.  相似文献   

11.
A specially adapted schlieren system is used to generate fluctuating signals which respond strongly to large scale coherent components of a turbulent mixing jet flow and which have a relatively reduced response to random disturbances. The schlieren signals also provide a direct indication of the presence of vortex-like structures in the turbulent mixing layers by virtue of the phase relationship of the schlieren signals to the pressure field. This system gives a clear resolution of the fluctuating periodic effects associated with vortex structures in the flow from a choked convergent nozzle. It has thus been possible to determine that vortex-like eddies are associated with the feedback screech mechanism, and also generate periodic disturbances due to their passage through the diamond shaped wave structure in the flow. The regular disturbances in the flow move at 0.77 of the fully expanded flow velocity. Phase spectral observations demonstrate clearly the vortex like structure of coherent disturbances in the flow by virtue of the quadrature phase relation between the schlieren and microphone signals. Movement of the sensing microphone in the pressure field external to the flow shows disturbance propagation at the acoustic velocity, and also shows that disturbances at Strouhal numbers above 0.7 emanating from the inner mixing zone can be identified by an additional time delay to reach the microphone and only influence the microphone when it is located downstream of the flow sensing schlieren system due to confinement of pressure disturbances within Mach cones of the flow.  相似文献   

12.
Detailed near-field structures of highly underexpanded sonic free jets have been investigated with the help of computational fluid dynamics. Two-dimensional, axisymmetric Euler equations have been chosen to predict the underexpanded jets, and the third-order total variation diminishing finite-difference scheme has been applied to solve the system of governing equations numerically. Several different nozzles have been employed to investigate the influence of the nozzle geometry on the near-field structures of highly underexpanded sonic free jets. The results obtained show that the distance from the nozzle exit to the Mach disk is an increasing function of the jet–pressure ratio, which also significantly influences the shape of the jet boundary. The diameter of the Mach disk increases with the jet–pressure ratio, and it is further significantly influenced by the nozzle geometry, unlike the distance of the Mach disk from the nozzle exit. However, such a dependence on the nozzle geometry is no longer found when an effective-diameter concept is taken into account for the flow from a sharp-edged orifice. A good correlation in the diameters of the Mach disk is obtained, so that the near-field structure of highly underexpanded sonic free jets is a unique function of the pressure ratio, regardless of the nozzle geometry.  相似文献   

13.
不完全膨胀超声速射流的势核中会产生准周期的激波栅格结构, 其与剪切层内拟序结构的相互作用会产生激波噪声. 啸声是主要向上游方向传播的、具有离散频率的高强度激波噪声, 其产生是受一种非线性的声反馈环机制驱动. 精确定位啸声的声源位置是定量理解啸声反馈环机制和发展准确的啸声预测模型的一个关键所在. 为了分析近场啸声, 本文采用高精度数值方法直接求解轴对称可压缩Navier-Stokes方程, 数值模拟了完全膨胀射流马赫数为1.10和1.15的圆形声速喷管欠膨胀超声速冷射流, 得到了A1和A2两种轴对称模态啸声. 通过傅里叶模态分解、本征模态分解和动态模态分解, 分析了射流时序压力场和速度场, 研究了啸声关联拟序流动结构的空间演化, 精确定位了轴对称模态啸声的声源位置. 研究表明: 啸声关联拟序流动结构存在饱和态区域, 啸声声波是在其饱和态区域产生并向外传播; 在本文所涉及的射流马赫数范围内, A1和A2两种轴对称模态啸声的有效声源位置分别是在第4和第3个激波栅格结构的尾缘.   相似文献   

14.
S. I. Kim  S. O. Park 《Shock Waves》2005,14(4):259-272
Oscillatory flows of a choked underexpanded supersonic impinging jet issuing from a convergent nozzle have been computed using the axisymmetric unsteady Navier--Stokes system. This paper focuses on the oscillatory flow features associated with the variation of the nozzle-to-plate distance and nozzle pressure ratio. Frequencies of the surface pressure oscillation and flow structural changes from computational results have been analyzed. Staging behavior of the oscillation frequency has been observed for both cases of nozzle-to-plate distance variation and pressure ratio variation. However, the staging behavior for each case exhibits different features. These two distinct staging behaviors of the oscillation frequency are found to correlate well if the frequency and the distance are normalized by the length of the shock cell. It is further found that the staging behavior is strongly correlated with the change of the pressure wave pattern in the jet shear layer, but not with the shock cell structure. Communicated by K. Takayama PACS 02.60.Cb; 47.40.−x; 47.40.Nm; 47.35.+I; 47.15.−x  相似文献   

15.
Air ejectors are used for sorting materials by displacing selected items through the action of aerodynamic drag. Subsonic units are common in the marketplace. This paper explores the potential for the use of an overexpanded supersonic jet because of it having reduced lateral spread and giving significantly higher particle drag. Experiments have been conducted to explore the flow field associated with a pulsed supersonic jet impacting particles in different positions relative to the jet exit, and of various shapes. The forces acting on a typical particle are measured and schlieren photography is used to visualize the flow.  相似文献   

16.
The present study describes an experimental work to investigate the effect of a nozzle exit reflector on a supersonic jet that is discharged from a convergent–divergent nozzle with a design Mach number of 2.0. An annular reflector is installed at the nozzle exit and its diameter is varied. A high-quality spark schlieren optical system is used to visualize detailed jet structures with and without the reflector. Impact pressure measurement using a pitot probe is also carried out to quantify the reflector’s effect on the supersonic jet which is in the range from an over-expanded to a moderately under-expanded state. The results obtained show that for over-expanded jets, the reflector substantially increases the jet spreading rate and reduces the supersonic length of the jet, compared with moderately under-expanded jets. The reflector’s effect appears more significant in imperfectly expanded jets that have strong shock cell structures, but is negligible in correctly expanded jet.  相似文献   

17.
Mixing of jets is crucial for optimal performance of many industrial applications and there is a need to optimize both nozzle geometry and flow conditions. The present study reports the influence of buoyancy and perforation on mixing between a jet and its environment. Optical techniques are ideal for the study of jet mixing due to their non-intrusive and inertia free properties. The present study gives an account of mixing between helium jet and the ambient fluid using a combination of color schlieren deflectometry and radial tomographic mathematics. Four different perforation sizes have been used and the experiments are performed for Reynolds numbers 21–676 and Richardson numbers 3.27–0.0015. Color schlieren images show distinct influence of perforation and flow conditions (Richardson number). Oxygen concentration and jet width quantify effectiveness of jet mixing. Buoyancy plays an important role in mixing at high Richardson number. Perforation improves jet mixing i.e. there is about 120% increase in jet width and the size of perforation plays an important role.  相似文献   

18.
The structures of the axisymmetric free jets from supersonic nozzles with the exit Mach numbers of 1.5 and 2.0 are studied with special attention to the decay of the Pitot pressures downstream of the Mach disk. The Pitot pressure probe and schlieren method are used in the experiments to diagnose the flowfield. A TVD numerical method is also applied to the Euler equations, and the computed jet structures are compared with experiments. In the underexpanded jet, the experimentally obtained Pitot pressure near the jet centerline is found to substantially recover downstream of the Mach disk. By comparing the numerical computation, this phenomenon is thought to be caused by the turbulent momentum transfer to the central region from the region outside the slip line where the stagnation pressure loss is small.  相似文献   

19.
K. Hatanaka  T. Saito 《Shock Waves》2012,22(5):427-434
The effect of nozzle geometry on the structure of a supersonic free jet is investigated both experimentally and numerically for three simple nozzle geometries. In the experiments, the relation between the Mach disk height and diameter and the nozzle pressure ratio are investigated using the schlieren method. In contrast to results obtained in previous studies, our experimental results show that the Mach disk height changes depending on the nozzle geometry. Numerical investigations were conducted by introducing flows upstream of the nozzle and the influence of these upstream flows on free jet configuration has been discussed.  相似文献   

20.
The effect of vortex generators, in the form of small tabs projecting into the flow at the nozzle exit, aided by secondary tabs on either side, on the mixing characteristics of an axisymmetric jet at Mach number 1.7 is investigated. Experimental studies on the basic features of the jet from a nozzle with secondary tabs are conducted to assess the free jet characteristics as well as the momentum and thermal mixing behavior. The secondary tabs were found to increase the jet spread and distort the jet cross-section and were found to cause substantial enhancement of mixing of supersonic jets. Jet structure is observed using flow-visualization techniques. LLS images are employed to obtain cross-sectional views of the jet with the introduction of secondary tabs. The ability of secondary tabs to eliminate the screech noise of the supersonic jet is also observed. Received: 3 February 2000/Accepted: 8 February 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号