首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adhesion properties and catalytic activity of rutile TiO(2)(110)-supported Au(7) nanoclusters in different oxidation states are investigated by means of density functional theory. The calculations cover both surface science conditions of reduced TiO(2) and real catalyst conditions of oxidized (alkaline) TiO(2) supports. Large adhesion energies of Au(7) are found only when modeling real catalysts where the cluster becomes cationic with Au(+) ions in Au-O or Au-OH bonds. The full catalytic cycle for oxidation of CO by O(2) over Au(7) on alkaline TiO(2)(110) is calculated and found to involve only small activation barriers. In the presence of the CO reductant, the Au(+) sites are capable of cycling between bonding of atomic and molecular oxygen. We confirm our findings by comparison of calculated and experimental infrared stretch frequency data for adsorbed CO.  相似文献   

2.
The synergetic effect in multicomponent catalysts is a topic of profound industrial importance and intense academic interest. On a newly identified multicomponent catalyst, Au/IrO(2)/TiO(2), first-principles density-functional theory is analyzed to clarify the outstanding catalytic activity of the system for oxidative reactions at high temperatures. By comparing CO oxidation on interfaces and single-component surfaces, it is revealed that a high dispersion of a more active oxide (IrO2), on a more inert oxide (TiO2) is the key. It preserves the sintering resistance of Au supported on less active oxides, while at the same time promoting oxidative reactions that occur at the Au/active-oxide interface.  相似文献   

3.
二氧化钛载体包括二氧化钛纳米管阵列(TNTAs)和二氧化钛纳米线阵列(TNWAs)两种,载体的结构不同对催化性能有一定的影响。然而,Pt负载在TNTAs和TNWAs催化性能的比较鲜有报道。本文通过微波法制备了Pt/TNTAs和Pt/TNWAs两种催化剂,结果表明,Pt/TNTAs催化甲醇氧化效果要优于Pt/TNWAs。相较于Pt/TNWAs, Pt/TNTAs的优越催化性能可能与纳米管的限域效应有关。可见,载体的结构对催化剂的性能有很大的影响。  相似文献   

4.
Au/TiO2/Ru(0 0 0 1) model catalysts and their interaction with CO were investigated by scanning tunneling microscopy and different surface spectroscopies. Thin titanium oxide films were prepared by Ti deposition on Ru(0 0 0 1) in an O2 atmosphere and subsequent annealing in O2. By optimizing the conditions for deposition and post-treatment, smooth films were obtained either as fully oxidized TiO2 or as partly reduced TiOx, depending on the preparation conditions. CO adsorbed molecularly on both oxidized and reduced TiO2, with slightly stronger bonding on the reduced films. Model catalyst surfaces were prepared by depositing submonolayer quantities of Au on the films and characterized by X-ray photoelectron spectroscopy and scanning tunneling microscopy. From X-ray photoelectron spectroscopy, a weak interaction between the Au and the TiO2 substrate was found. At 100 K CO adsorption occurred on both the TiO2 film and on the Au nanoparticles. CO desorbed from the Au particles with activation energies between 53 and 65 kJ/mol, depending on the Au coverage. If the Au deposit was annealed to 770 K prior to CO exposure, the CO adsorption energy decreased significantly. STM measurements revealed that the Au particles grow upon annealing, but are not encapsulated by TiOx suboxides. The higher CO adsorption energy observed for smaller Au coverages and before annealing is attributed to a significantly stronger interaction of CO with mono- and bilayer Au islands, while for higher particles, the adsorption energy becomes more bulk-like. The implications of these effects on the known particle size effects in CO oxidation over supported Au/TiO2 catalysts are discussed.  相似文献   

5.
Du SY  Li ZY 《Optics letters》2010,35(20):3402-3404
We propose a scheme to enhance near-UV band absorption of a rutile TiO(2) nanoparticle by placing Au nanoparticles in its neighborhood. The discrete-dipole approximation method was employed to calculate the absorption spectrum of pure rutile TiO(2) and that of TiO(2) mixed with Au nanoparticles. The results indicate that pure rutile TiO(2) has its maximum absorption located in the deep-UV band. With the existence of Au nanoparticles, a significant light harvesting effect occurs, and this maximum shifts to the near-UV band, where usual excitation wavelength falls.  相似文献   

6.
Gold clusters supported on TiO2(110) exhibit unusual activity for the oxidation of methanol to formaldehyde. Temperature programmed desorption studies of methanol on Au clusters show that both Au and titania sites are necessary for methanol reaction. Isotopic labeling experiments with CD3OH demonstrate that reaction occurs via OH bond scission to form a methoxy intermediate. When the TiO2 surface is oxidized with 18O2 before or after Au deposition, methanol reaction produces H218O below 300 K, indicating that oxygen from titania promotes OH bond scission and is incorporated into desorbing products. XPS experiments provide additional evidence that during methanol reaction on the Au/TiO2 surface, methanol adsorption occurs on TiO2, given that the titania support becomes slightly oxidized after exposure to methanol in the presence of Au clusters. While the role of TiO2 is to dissociate the OH bond and form the reactive methoxy intermediate, the role of the Au sites is to remove hydrogen from the surface as H2, thus preventing the recombination of methoxy and hydrogen to methanol. The decrease in formaldehyde yield with increasing Au coverage above 0.25 ML suggests that reaction occurs at Au–titania interfacial sites; scanning tunneling microscopy images of various Au coverages confirm that the number of interfacial sites at the perimeter of the Au clusters decreases as the Au coverage is increased between 0.25 and 5 ML.  相似文献   

7.
The oxidation of CO at MgO supported gold aggregates is studied by means of density functional theory calculations. In addition to serving as a structural promoter holding the gold particles, the supporting oxide also takes an active role in the bonding and activation of adsorbates bound to the gold. The oxide stabilizes a peroxolike reaction intermediate, CO.O2, and causes steric repulsion to CO. The most reactive site at Au/MgO appears where the gold shelters the MgO thereby creating a cavity where several low-coordinated Au atoms and Mg2+ cations from the substrate can interact simultaneously with an adsorbate.  相似文献   

8.
CO oxidation has been investigated on Au/MgO(100) model catalysts at RT and low pressure. The gold particles prepared by UHV evaporation on clean MgO surfaces are characterized by HRTEM. The gold particles are FCC single crystals or multiple twins with five-fold symmetry. Infrared spectroscopy indicates that two types of adsorption sites are present which correspond to loosely and strongly bound CO. The equilibrium CO coverage for the strongly bound CO is smaller than 0.1 ML. CO titration experiments show that oxygen does not dissociate on the gold nanoparticles. The CO oxidation reaction is studied at RT by molecular beam methods. A steady state CO reaction probability up to 0.50 is measured, for the first time at low pressure, for gold particles with a mean size of 1.5 nm. A reaction mechanism is proposed in which CO adsorbed on low coordinated gold atoms reacts with oxygen adsorbed molecularly, possibly at the Au/MgO interface.  相似文献   

9.
Mo(CO)6 can be useful as a precursor for the preparation of Mo and MoSx nanoparticles on a Au(1 1 1) substrate. On this surface the carbonyl adsorbs intact at 100 K and desorbs at temperatures lower than 300 K. Under these conditions, the dissociation of the Mo(CO)6 molecule is negligible and a desorption channel clearly dominates. An efficient dissociation channel was found after dosing Mo(CO)6 at high temperatures (>400 K). The decomposition of Mo(CO)6 yields the small coverages of pure Mo that are necessary for the formation of Mo nanoclusters on the Au(1 1 1) substrate. At large coverages of Mo (>0.15 ML), the dissociation of Mo(CO)6 produces also C and O adatoms. Mo nanoclusters bonded to Au(1 1 1) exhibit a surprising low reactivity towards CO. Mo/Au(1 1 1) surfaces with Mo coverages below 0.1 ML adsorb the CO molecule weakly (desorption temperature<400 K) and do not induce C–O bond cleavage. These systems, however, are able to induce the dissociation of thiophene at temperatures below 300 K and react with sulfur probably to form MoSx nanoparticles. The formed MoSx species are more reactive towards thiophene than extended MoS2(0 0 0 2) surfaces, MoSx films or MoSx/Al2O3 catalysts. This could be a consequence of special adsorption sites and/or distinctive electronic properties that favor bonding interactions with sulfur-containing molecules.  相似文献   

10.
An environment-friendly oxidation-reduction method was used to prepare Au/C core-shell composite using carbon as core and gold as shell. The chemical structures and morphologies of Au/C core-shell composite and carbon sphere were characterized by X-ray diffraction, transmission electron microscope, energy dispersion X-ray spectrometry (EDS) and X-ray photoelectron spectroscopy (XPS). The antibacterial properties of the Au/C core-shell composite against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Candida albicans (C. albicans) were examined by the disk diffusion assay and minimal inhibition concentration (MIC) methods. In addition, antibacterial ability of Au/C core-shell composite was observed by atomic force microscope. Results demonstrated that gold homogeneously supported on the surface of carbon spheres without aggregation and showed efficient antibacterial abilities.  相似文献   

11.
Fe-fullerene/TiO(2) composite catalysts were prepared with titanium (IV) n-butoxide (TNB) by a sol-gel method. The samples were characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM), specific surface area (BET), X-ray diffraction analysis (XRD) and energy dispersive X-ray spectroscopy (EDX). The catalytic activities were evaluated by the catalytic oxidation of methylene blue (MB) solution. XRD patterns of the composites showed that the Fe-fullerene/TiO(2) composite contained a typical single and clear anatase phase. The surface properties shown by SEM present a characterization of the texture on Fe-fullerene/TiO(2) composites and showed a homogenous composition in the particles for the titanium sources used. The EDX spectra for the elemental identification showed the presence of C and Ti with strong Fe peaks for the Fe-fullerene/TiO(2) composite. The degradation of MB solution by ultrasonic irradiation in the presence of Fe-fullerene/TiO(2) compounds was investigated in complete darkness. With the increase in the amount of Fe, the degradation rate of methylene blue solution also increased.  相似文献   

12.
The results of an IR study on the interaction of CO/O2 gas mixtures with planar Au/TiO2 model catalysts at elevated pressures and at room temperature are presented. The model catalysts were prepared by deposition of a flat titania film on a Ru(0 0 0 1) substrate and subsequent evaporation of gold on the titania film. In the presence of the gas mixtures, an IR band in the CO stretching region was formed, pointing to linearly adsorbed CO. The position of this band is nearly independent of the Au coverage employed. Compared to pure CO, the IR band is shifted to higher wave numbers when CO/O2 gas mixtures are used. Although the production of CO2 was detected in the CO oxidation reaction on the model catalysts, the formation of other IR bands, revealing the build-up of carbonates or other side-products which is usually observed for Au/TiO2 real powder catalysts, was very weak.  相似文献   

13.
负载型金纳米颗粒催化剂在许多催化反应中展现出非常好的催化活性,但是金纳米颗粒在高温等反应条件下容易烧结团聚,极大地限制了金催化剂的应用。利用原子层沉积技术在Au/TiO2催化剂表面分别精确沉积了一层超薄的二氧化钛和氧化铝包裹层,并对比研究了包裹层对金纳米颗粒的热稳定性影响。原位红外漫反射CO吸附和x-射线光电子能谱数据证实了氧化物包裹层的存在。发现亚纳米厚的氧化铝包裹层能够在600 C完全避免金纳米颗粒的团聚;相反,二氧化钛包裹层对金纳米颗粒稳定性的提高没有明显效果。通过CO氧化探针反应的活性测试,发现随着煅烧温度的升高氧化铝包裹的Au/TiO2 催化剂的活性逐渐提高,表明高温处理可以促进被包裹金原子的暴露并表现出催化活性。提供了提高金纳米颗粒稳定性的有效方法,为拓展金催化剂在条件苛刻的反应中的应用奠定了技术基础.  相似文献   

14.
报道了TiO2对牛血清白蛋白(BSA)的光催化降解。利用紫外-可见光谱(UV—Vis)、傅里叶变换红外光谱(FTIR)以及高效液相色谱(HPLC)研究了降解过程并对降解终产物进行了分析。结果显示:在近紫外灯(365nm)照射下,BSA在5h内就可以被TiO2光催化完全降解为小碎片,延长反应时间到40h可使BSA完全矿化(93.5%),其中C,N和S分别被矿化成CO2,NO3^-和SO4^2-而在仅有紫外灯或仅有TiO2存在的条件下,5h内仅有30%左右BSA被降解为小碎片,即使延长反应时间,也无法使BSA矿化成CO2和无机离子。  相似文献   

15.
Zhenjun Li  Wilfred T. Tysoe 《Surface science》2012,606(23-24):1934-1941
The adsorption of acetic acid is studied on clean and oxygen-covered Au/Pd(100) alloys as a function of gold content by temperature-programmed desorption and reflection–absorption infrared spectroscopy. Au/Pd(100) forms ordered alloys such that, for gold coverages above ~ 0.5 monolayers, only isolated palladium atoms surrounded by gold nearest neighbors are present. Predominantly molecular acetic acid forms on Au/Pd(100) alloy surfaces for gold coverages greater than ~ 0.56 ML, and desorbs with an activation energy of ~ 59 kJ/mol. Heating this surface also forms some η1-acetate species which decompose to form CO and hydrogen. On alloy surfaces with palladium–palladium bridge sites, η1-acetate species initially form, but rapidly convert into η2-species. They thermally decompose to form CO and hydrogen, with a small portion rehydrogenating to form acetic acid between 280 and 321 K depending on gold coverage. The presence of oxygen on both Pd(100) and Au/Pd(100) alloys facilitates acetate dehydrogenation so that only η2-acetate species form on these surfaces. The presence of oxygen also serves to stabilize the acetate species.  相似文献   

16.
We performed H2–D2 exchange reactions over TiOx/Au(100) and compared the observed reaction kinetics with those reported for TiOx/Au(111) in order to clarify the influence of the Au and TiO2 structures on dissociation of H2 molecules. Low energy electron diffraction observations showed that the TiO2 produced on Au(100) was disordered, in contrast to the comparatively ordered TiO2 structure formed on Au(111). The activation energies and the turnover frequencies for HD formation over TiO2/Au(100) agreed well with those for TiO2/Au(111), clearly indicating that the hydrogen dissociation sites created over TiO2/Au(100) were the perimeter interface between stoichiometric TiO2 and Au, as was previously concluded for TiO2/Au(111). We concluded that the creation of active sites for hydrogen dissociation was independent of the Au and TiO2 structures consisting perimeter interface, and that local bonds that formed between Au and O atoms of stoichiometric TiO2 were essential for the creation of active sites.  相似文献   

17.
采用时间分辨红外光谱直接观测了甲醇在Pt/TiO2上光催化反应制氢过程中光生电子还原氢离子生成氢气的反应过程.结果表明Pt的担载量存在一最佳值,使得该催化剂中光生电子的反应速度最快.当Pt担载量相同时,Pt/TiO2催化剂中光生电子参与产氢反应的速度随样品还原温度的不同而明显变化.可能的原因是较高温度下氢气还原的Pt/TiO2催化剂中Pt粒子占据了TiO2表面的一些能够解离吸附甲醇的活性位置,而对于较低温度下氢气还原的Pt/TiO2催化剂,这种占据作用很不明显.实验中还发现瞬态动力学研究中光生电子衰减较快  相似文献   

18.
A core-shell nanocomposite (CdS/TiO(2)) was synthesized at relatively low temperature (70°C) with small particle sizes (~11 nm). First, CdS nanoparticles were prepared by a combination of ultrasound and new micro-emulsion (O/W) without surfactant. Then the synthesized CdS was easily combined with TiO(2) under sonication. The formation of uniform surface layer of TiO(2) with depths of 0.75-1.1 nm on the CdS led to an increase of particle size. Ultrasonic irradiation can control the hydrolysis and condensation of titanium tetra-isopropoxide (TTIP) and the formation of TiO(2) shell around the CdS core. This technique avoids some of the problems that exist in conventional microemulsion synthesis such as the presence of different additives and calcinations. It was found that nanocomposite particles extend the optical absorption spectrum into the visible region in comparison with pure TiO(2) and pure CdS. In addition, a larger depth of TiO(2) led to a red-shift of the absorption band in nanocomposite. The characterization of nanocomposites has been studied by HRTEM, TEM, XRD, EDAX, BET and, UV-vis.  相似文献   

19.
Jooho Kim  Bruce E. Koel 《Surface science》2006,600(19):4622-4632
Nanosized gold particles supported on reducible metal oxides have been reported to show high catalytic activity toward CO oxidation at low temperature. This has generated great scientific and technological interest, and there have been many proposals to explain this unusual activity. One intriguing explanation that can be tested is that of Nørskov and coworkers [Catal. Lett. 64 (2000) 101] who suggested that the “unusually large catalytic activity of highly-dispersed Au particles may in part be due to high step densities on the small particles and/or strain effects due to the mismatch at the Au-support interface”. In particular, their calculations indicated that the Au(2 1 1) stepped surface would be much more reactive towards O2 dissociative adsorption and CO adsorption than the Au(1 1 1) surface. We have now studied the adsorption of O2 and O3 (ozone) on an Au(2 1 1) stepped surface. We find that molecular oxygen (O2) was not activated to dissociate and produce oxygen adatoms on the stepped Au(2 1 1) surface even under high-pressure (700 Torr) conditions with the sample at 300-450 K. Step sites do bind oxygen adatoms more tightly than do terrace sites, and this was probed by using temperature programmed desorption (TPD) of O2 following ozone (O3) exposures to produce oxygen adatoms up to a saturation coverage of θO = 0.90 ML. In the low-coverage regime (θO ? 0.15 ML), the O2 TPD peak at 540 K, which does not shift with coverage, is attributed to oxygen adatoms that are bound at the steps on the Au(2 1 1) surface. At higher coverages, an additional lower temperature desorption peak that shifts from 515 to 530 K at saturation coverage is attributed to oxygen adsorbed on the (1 1 1) terrace sites of the Au(2 1 1) surface. Although the desorption kinetics are likely to be quite complex, a simple Redhead analysis gives an estimate of the desorption activation energy, Ed, for the step-adsorbed oxygen of 34 kcal/mol and that for oxygen at the terraces near saturation coverage of 33 kcal/mol, values that are similar to others reported on Au surfaces. Low Energy Electron Diffraction (LEED) indicates an oxygen-induced step doubling on the Au(2 1 1) surface at low-coverages (θO = 0.08-0.17 ML) and extensive disruption of the 2D ordering at the surface for saturation coverages of oxygen (θO ? 0.9 ML). Overall, our results indicate that unstrained step sites on Au(2 1 1) surfaces of dispersed Au nanoparticles do not account for the novel reactivity of supported Au catalysts for CO oxidation.  相似文献   

20.
研究了十六烷基三甲基溴化铵 (CTAB) /正己醇 /水体系的W/O微乳体系中 ,几种主要实验参数对用NaBH4还原氯金酸溶液制得的金纳米粒子大小的影响。实验结果表明 :微乳体系中水与表面活性剂的摩尔比rw 在所研究的范围内对金粒子大小影响不大 ,而氯金酸溶液的浓度对金粒子大小影响较大。通过优化制备条件 ,用两种不同的方法制备了Au/Al2 O3 催化剂 ,并用紫外 可见光谱、透射电镜 (TEM)和X射线衍射(XRD)对其进行表征 ,初步考察了不同制备方法对催化剂中活性组分Au粒大小的影响  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号