首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Placement of medium-sized molecular fragments into active sites of proteins   总被引:2,自引:0,他引:2  
Summary We present an algorithm for placing molecular fragments into the active site of a receptor. A molecular fragment is defined as a connected part of a molecule containing only complete ring systems. The algorithm is part of a docking tool, called FlexX, which is currently under development at GMD. The overall goal is to provide means of automatically computing low-energy conformations of the ligand within the active site, with an accuracy approaching the limitations of experimental methods for resolving molecular structures and within a run time that allows for docking large sets of ligands. The methods by which we plan to achieve this goal are the explicit exploitation of molecular flexibility of the ligand and the incorporation of physicochemical properties of the molecules. The algorithm for fragment placement, which is the topic of this paper, is based on pattern recognition techniques and is able to predict a small set of possible positions of a molecular fragment with low flexibility within seconds on a workstation. In most cases, a placement with rms deviation below 1.0 Å with respect to the X-ray structure is found among the 10 highest ranking solutions, assuming that the receptor is given in the bound conformation.  相似文献   

2.
We have developed a new docking program that explores ligand flexibility. This program can be applied to database searches. The program is similar in concept to earlier efforts, but it has been automated and improved. The algorithm begins by selecting an anchor fragment of a ligand. This fragment is protonated, as needed, and then placed in the receptor by the DOCK algorithm, followed by minimization using a simplex method. Finally, the conformations of the remaining parts of the putative ligands are searched by a limited backtrack method and minimized to get the most stable conformation. To test the efficiency of this method, the program was used to regenerate ten ligand–protein complex structures. In all cases, the docked ligands basically reproduced the crystallographic binding modes. The efficiency of this method was further tested by a database search. Ten percent of molecules from the Available Chemicals Directory (ACD) were docked to a dihydrofolate reductase structure. Most of the top-ranking molecules (7 of the top 13 hits) are dihydrofolate or methotrexate derivatives, which are known to be DHFR inhibitors, demonstrating the suitability of this program for screening molecular databases. © 1997 John Wiley & Sons, Inc. J Comput Chem 18 : 1812–1825, 1997  相似文献   

3.
CONFIRM: connecting fragments found in receptor molecules   总被引:1,自引:0,他引:1  
A novel algorithm for the connecting of fragment molecules is presented and validated for a number of test systems. Within the CONFIRM (Connecting Fragments Found in Receptor Molecules) approach a pre-prepared library of bridges is searched to extract those which match a search criterion derived from known experimental or computational binding information about fragment molecules within a target binding site. The resulting bridge 'hits' are then connected, in an automated fashion, to the fragments and docked into the target receptor. Docking poses are assessed in terms of root-mean-squared deviation from the known positions of the fragment molecules, as well as docking score should known inhibitors be available. The creation of the bridge library, the full details and novelty of the CONFIRM algorithm, and the general applicability of this approach within the field of fragment-based de novo drug design are discussed.  相似文献   

4.
Summary Atom assignment onto 3D molecular graphs is a combinatoric problem in discrete space. If atoms are to be placed efficiently on molecular graphs produced in drug binding sites, the assignment must be optimized. An algorithm, based on simulated annealing, is presented for efficient optimization of fragment placement. Extensive tests of the method have been performed on five ligands taken from the Protein Data Bank. The algorithm is presented with the ligand graph and the electrostatic potential as input. Self placement of molecular fragments was monitored as an objective test. A hydrogen-bond option was also included, to enable the user to highlight specific needs. The algorithm performed well in the optimization, with successful replications. In some cases, a modification was necessary to reduce the tendency to give multiple halogenated structures. This optimization procedure should prove useful for automated de novo drug design.  相似文献   

5.
The interaction between small molecules and proteins is one of the major concerns for structure-based drug design because the principles of protein-ligand interactions and molecular recognition are not thoroughly understood. Fortunately, the analysis of protein-ligand complexes in the Protein Data Bank (PDB) enables unprecedented possibilities for new insights. Herein, we applied molecule-fragmentation algorithms to split the ligands extracted from PDB crystal structures into small fragments. Subsequently, we have developed a ligand fragment and residue preference mapping (LigFrag-RPM) algorithm to map the profiles of the interactions between these fragments and the 20 proteinogenic amino acid residues. A total of 4032 fragments were generated from 71?798 PDB ligands by a ring cleavage (RC) algorithm. Among these ligand fragments, 315 unique fragments were characterized with the corresponding fragment-residue interaction profiles by counting residues close to these fragments. The interaction profiles revealed that these fragments have specific preferences for certain types of residues. The applications of these interaction profiles were also explored and evaluated in case studies, showing great potential for the study of protein-ligand interactions and drug design. Our studies demonstrated that the fragment-residue interaction profiles generated from the PDB ligand fragments can be used to detect whether these fragments are in their favorable or unfavorable environments. The algorithm for a ligand fragment and residue preference mapping (LigFrag-RPM) developed here also has the potential to guide lead chemistry modifications as well as binding residues predictions.  相似文献   

6.
A possible way of tackling the molecular docking problem arising in computer- aided drug design is the use of the incremental construction method. This method consists of three steps: the selection of a part of a molecule, a so- called base fragment, the placement of the base fragment into the active site of a protein, and the subsequent reconstruction of the complete drug molecule. Assuming that a part of a drug molecule is known, which is specific enough to be a good base fragment, the method is proven to be successful for a large set of docking examples. In addition, it leads to the fastest algorithms for flexible docking published so far. In most real-world applications of docking, large sets of ligands have to be tested for affinity to a given protein. Thus, manual selection of a base fragment is not practical. On the other hand, the selection of a base fragment is critical in that only few selections lead to a low-energy structure. We overcome this limitation by selecting a representative set of base fragments instead of a single one. In this paper, we present a set of rules and algorithms to automate this selection. In addition, we extend the incremental construction method to deal with multiple fragmentations of the drug molecule. Our results show that with multiple automated base selection, the quality of the docking predictions is almost as good as with one manually preselected base fragment. In addition, the set of solutions is more diverse and alternative binding modes with low scores are found. Although the run time of the overall algorithm increases, the method remains fast enough to search through large ligand data sets.  相似文献   

7.
Protein-templated fragment ligation is a novel concept to support drug discovery and can help to improve the efficacy of protein ligands. Protein-templated fragment ligations are chemical reactions between small molecules (“fragments”) utilizing a protein's surface as a reaction vessel to catalyze the formation of a protein ligand with increased binding affinity. The approach exploits the molecular recognition of reactive small-molecule fragments by proteins both for ligand assembly and for the identification of bioactive fragment combinations. In this way, chemical synthesis and bioassay are integrated in one single step. This Review discusses the biophysical basis of reversible and irreversible fragment ligations and gives an overview of the available methods to detect protein-templated ligation products. The chemical scope and recent applications as well as future potential of the concept in drug discovery are reviewed.  相似文献   

8.
Summary Drug design strategies consider factors governing intermolecular interactions to build up putative ligands. In many strategies, the ligand is constructed using fragments which are placed in the site sequentially. The optimization is then performed with each fragment. We would like to examine if this optimization strategy could generate ligands with optimal electrostatic interactions. The electrostatic complementarities between constituent moieties and the receptor site have been calculated. The whole-ligand complementarity does not appear to be the mathematical mean of the individual complementarities, nor have we found a simple relationship between the moiety and whole-ligand complementarities. The results demonstrate clearly that, using a simple model, it is very difficult to predict the electrostatic potential complementarity of the whole ligand from the complementarities of its constituent chemical moieties. This means that ligand design strategies must optimize the electrostatic complementarity globally, and not moiety by moiety.  相似文献   

9.
SAMPL3 fragment based virtual screening challenge provides a valuable opportunity for researchers to test their programs, methods and screening protocols in a blind testing environment. We participated in SAMPL3 challenge and evaluated our virtual fragment screening protocol, which involves RosettaLigand as the core component by screening a 500 fragments Maybridge library against bovine pancreatic trypsin. Our study reaffirmed that the real test for any virtual screening approach would be in a blind testing environment. The analyses presented in this paper also showed that virtual screening performance can be improved, if a set of known active compounds is available and parameters and methods that yield better enrichment are selected. Our study also highlighted that to achieve accurate orientation and conformation of ligands within a binding site, selecting an appropriate method to calculate partial charges is important. Another finding is that using multiple receptor ensembles in docking does not always yield better enrichment than individual receptors. On the basis of our results and retrospective analyses from SAMPL3 fragment screening challenge we anticipate that chances of success in a fragment screening process could be increased significantly with careful selection of receptor structures, protein flexibility, sufficient conformational sampling within binding pocket and accurate assignment of ligand and protein partial charges.  相似文献   

10.
If structural knowledge of a receptor under consideration is lacking, drug design approaches focus on similarity or dissimilarity analysis of putative ligands. In this context the mutual ligand superposition is of utmost importance. Methods that are rapid enough to facilitate interactive usage, that allow to process sets of conformers and that enable database screening are of special interest here. The ability to superpose molecular fragments instead of entire molecules has proven to be helpful too. The RigFit approach meets these requirements and has several additional advantages. In three distinct test applications, we evaluated how closely we can approximate the observed relative orientation for a set of known crystal structures, we employed RigFit as a fragment placement procedure, and we performed a fragment-based database screening. The run time of RigFit can be traded off against its accuracy. To be competitive in accuracy with another state-of-the-art alignment tool, with which we compare our method explicitly, computing times of about 6s per superposition on a common day workstation are required. If longer run times can be afforded the accuracy increases significantly. RigFit is part of the flexible superposition software FlexS which can be accessed on the WWW [http://cartan.gmd.de/FlexS].  相似文献   

11.
A genetic algorithm (GA) conformation search method is used to dock a series of flexible molecules into one of three proteins. The proteins examined are thermolysin (tmn), carboxypeptidase A (cpa), and dihydrofolate reductase (dfr). In the latter two proteins, the crystal ligand was redocked. For thermolysin, we docked eight ligands into a protein conformation derived from a single crystal structure. The bound conformations of the other ligands in tmn are known. In the cpa and dfr cases, and in seven of the eight tmn ligands, the GA docking method found conformations within 1.6 Å root mean square (rms) of the relaxed crystal conformation. © 1995 John Wiley & Sons, Inc.  相似文献   

12.
Summary Mutual binding between a ligand of low molecular weight and its macromolecular receptor demands structural complementarity of both species at the recognition site. To predict binding properties of new molecules before synthesis, information about possible conformations of drug molecules at the active site is required, especially if the 3D structure of the receptor is not known. The statistical analysis of small-molecule crystal data allows one to elucidate conformational preferences of molecular fragments and accordingly to compile libraries of putative ligand conformations. A comparison of geometries adopted by corresponding fragments in ligands bound to proteins shows similar distributions in conformation space. We have developed an automatic procedure that generates different conformers of a given ligand. The entire molecule is decomposed into its individual ring and open-chain torsional fragments, each used in a variety of favorable conformations. The latter ones are produced according to the library information about conformational preferences. During this building process, an extensive energy ranking is applied. Conformers ranked as energetically favorable are subjected to an optimization in torsion angle space. During minimization, unfavorable van der Waals interactions are removed while keeping the open-chain torsion angles as close as possible to the experimentally most frequently observed values. In order to assess how well the generated conformers map conformation space, a comparison with experimental data has been performed. This comparison gives some confidence in the efficiency and completeness of this approach. For some ligands that had been structurally characterized by protein crystallography, the program was used to generate sets of some 10 to 100 conformers. Among these, geometries are found that fall convincingly close to the conformations actually adopted by these ligands at the binding site.  相似文献   

13.
郭琳洁  彭红珍  李江  王丽华  诸颖 《应用化学》2022,39(10):1475-1487
细胞表面受体与配体之间的特异性相互作用在细胞生物学过程中起着重要作用。然而,与均相溶液不同,受体分子在细胞膜上的分布是非连续的、动态的,因此细胞表面的受体配体相互作用通常呈现复杂的非线性结合模式。框架核酸作为一类具有确定几何形状的DNA纳米支架,可用于多价配体的偶联,为深入揭示受体配体相互作用机制提供了可靠的工具。利用框架核酸纳米分辨率的可寻址特性,可实现对配体数目、间距及空间构象等参数的精确调控,进而研究细胞表面受体配体的结合特性及影响因素,优化结合条件最终实现高效的分子识别及靶向治疗。本文综述了基于框架核酸的细胞表面受体配体相互作用研究进展,通过探讨细胞表面受体配体相互作用的重要影响因素及生物学应用,对该研究领域的发展前景和未来趋势予以展望。  相似文献   

14.
In this study we evaluate how far the scope of similarity searching can be extended to identify not only ligands binding to the same target as the reference ligand(s) but also ligands of other homologous targets without initially known ligands. This "homology-based similarity searching" requires molecular representations reflecting the ability of a molecule to interact with target proteins. The Similog keys, which are introduced here as a new molecular representation, were designed to fulfill such requirements. They are based only on the molecular constitution and are counts of atom triplets. Each triplet is characterized by the graph distances and the types of its atoms. The atom-typing scheme classifies each atom by its function as H-bond donor or acceptor and by its electronegativity and bulkiness. In this study the Similog keys are investigated in retrospective in silico screening experiments and compared with other conformation independent molecular representations. Studied were molecules of the MDDR database for which the activity data was augmented by standardized target classification information from public protein classification databases. The MDDR molecule set was split randomly into two halves. The first half formed the candidate set. Ligands of four targets (dopamine D2 receptor, opioid delta-receptor, factor Xa serine protease, and progesterone receptor) were taken from the second half to form the respective reference sets. Different similarity calculation methods are used to rank the molecules of the candidate set by their similarity to each of the four reference sets. The accumulated counts of molecules binding to the reference target and groups of targets with decreasing homology to it were examined as a function of the similarity rank for each reference set and similarity method. In summary, similarity searching based on Unity 2D-fingerprints or Similog keys are found to be equally effective in the identification of molecules binding to the same target as the reference set. However, the application of the Similog keys is more effective in comparison with the other investigated methods in the identification of ligands binding to any target belonging to the same family as the reference target. We attribute this superiority to the fact that the Similog keys provide a generalization of the chemical elements and that the keys are counted instead of merely noting their presence or absence in a binary form. The second most effective molecular representation are the occurrence counts of the public ISIS key fragments, which like the Similog method, incorporates key counting as well as a generalization of the chemical elements. The results obtained suggest that ligands for a new target can be identified by the following three-step procedure: 1. Select at least one target with known ligands which is homologous to the new target. 2. Combine the known ligands of the selected target(s) to a reference set. 3. Search candidate ligands for the new targets by their similarity to the reference set using the Similog method. This clearly enlarges the scope of similarity searching from the classical application for a single target to the identification of candidate ligands for whole target families and is expected to be of key utility for further systematic chemogenomics exploration of previously well explored target families.  相似文献   

15.
Following the previous Part on the mechanisms of chiral recognition in pharmacology, the road was open to cover one aspect of stereoselectivity that had been evoked in Part 5 but not discussed explicitly, namely the pharmacological significance of the conformational behavior of active molecules. There, we saw how ligands and binding sites adapt to each other, but these results were not related explicitly to the conformational behavior of the ligand. The focus of the present Part is to use a few well‐known drugs, examine their conformational behavior, compare the 3D geometry of probable conformers with rigid analogs acting at the same receptor, and reflect on the concept of ‘active conformation’.  相似文献   

16.
Summary A computer procedure TFIT, which uses a molecular superposition force field to flexibly match test compounds to a 3D pharmacophore, was evaluated to find out whether it could reliably predict the bioactive conformations of flexible ligands. The program superposition force field optimizes the overlap of those atoms of the test ligand and template that are of similar chemical type, by applying an attractive force between atoms of the test ligand and template which are close together and of similar type (hydrogen bonding, charge, hydrophobicity). A procedure involving Monte Carlo torsion perturbations, followed by torsional energy minimization, is used to find conformations of the test ligand which cominimize the internal energy of the ligand and the superposition energy of ligand and template. The procedure was tested by applying it to a series of flexible ligands for which the bioactive conformation was known experimentally. The 15 molecules tested were inhibitors of thermolysin, HIV-1 protease or endothiapepsin for which X-ray structures of the bioactive conformation were available. For each enzyme, one of the molecules served as a template and the others, after being conformationally randomized, were fitted. The fitted conformation was then compared to the known binding geometry. The matching procedure was successful in predicting the bioactive conformations of many of the structures tested. Significant deviation from experimental results was found only for parts of molecules where it was readily apparent that the template did not contain sufficient information to accurately determine the bioactive conformation.  相似文献   

17.
Summary SPLICE is a program that processes partial query solutions retrieved from 3D, structural databases to generate novel, aggregate ligands. It is designed to interface with the database searching program FOUNDATION, which retrieves fragments containing any combination of a user-specified minimum number of matching query elements. SPLICE eliminates aspects of structures that are physically incapable of binding within the active site. Then, a systematic rule-based procedure is performed upon the remaining fragments to ensure receptor complementarity. All modifications are automated and remain transparent to the user. Ligands are then assembled by linking components into composite structures through overlapping bonds. As a control experiment, FOUNDATION and SPLICE were used to reconstruct a know HIV-1 protease inhibitor after it had been fragmented, reoriented, and added to a sham database of fifty different small molecules. To illustrate the capabilities of this program, a 3D search query containing the pharmacophoric elements of an aspartic proteinase-inhibitor crystal complex was searched using FOUNDATION against a subset of the Cambridge Structural Database. One hundred thirty-one compounds were retrieved, each containing any combination of at least four query elements. Compounds were automatically screened and edited for receptor complementarity. Numerous combinations of fragments were discovered that could be linked to form novel structures, containing a greater number of pharmacophoric elements than any single retrieved fragment.  相似文献   

18.
Performance of Glide was evaluated in a sequential multiple ligand docking paradigm predicting the binding modes of 129 protein-ligand complexes crystallized with clusters of 2-6 cooperative ligands. Three sampling protocols (single precision-SP, extra precision-XP, and SP without scaling ligand atom radii-SP hard) combined with three different scoring functions (GlideScore, Emodel and Glide Energy) were tested. The effects of ligand number, docking order and druglikeness of ligands and closeness of the binding site were investigated. On average 36?% of all structures were reproduced with RMSDs lower than 2??. Correctly docked structures reached 50?% when docking druglike ligands into closed binding sites by the SP hard protocol. Cooperative binding to metabolic and transport proteins can dramatically alter pharmacokinetic parameters of drugs. Analyzing the cytochrome P450 subset the SP hard protocol with Emodel ranking reproduced two-thirds of the structures well. Multiple ligand binding is also exploited by the fragment linking approach in lead discovery settings. The HSP90 subset from real life fragment optimization programs revealed that Glide is able to reproduce the positions of multiple bound fragments if conserved water molecules are considered. These case studies assess the utility of Glide in sequential multiple docking applications.  相似文献   

19.
Summary A non-local representation of the effective potential due to a molecular fragment is proposed here. Using this technique one can reproduce both Coulomb and exchange operators with kernels made up by molecular orbitals localized on a given molecular fragment. Such an approach seems particularly effective for large molecules with well-defined chemical fragments since in this case the kernel orbitals can be prepared through separate calculations on each fragment. The performance of the method is illustrated through calculations on specific molecular examples.  相似文献   

20.
We present a new algorithm for the fast and reliable structure prediction of synthetic receptor-ligand complexes. Our method is based on the protein-ligand docking program FlexX and extends our recently introduced docking technique for synthetic receptors, which has been implemented in the program FlexR. To handle the flexibility of the relevant molecules, we apply a novel docking strategy that uses an adaptive two-sided incremental construction algorithm which incorporates the structural flexibility of both the ligand and synthetic receptor. We follow an adaptive strategy, in which one molecule is expanded by attaching its next fragment in all possible torsion angles, whereas the other (partially assembled) molecule serves as a rigid binding partner. Then the roles of the molecules are exchanged. Geometric filters are used to discard partial conformations that cannot realize a targeted interaction pattern derived in a graph-based precomputation phase. The process is repeated until the entire complex is built up. Our algorithm produces promising results on a test data set comprising 10 complexes of synthetic receptors and ligands. The method generated near-native solutions compared to crystal structures in all but one case. It is able to generate solutions within a couple of minutes and has the potential of being used as a virtual screening tool for searching for suitable guest molecules for a given synthetic receptor in large databases of guests and vice versa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号