首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Quantifiable measures of vascularity obtained from contrast enhanced color flow images were correlated with pathologic vascularity measurements in ten female patients with a solid breast mass. Each patient received Levovist Injection (Berlex Laboratories Inc., Montville, NJ). Color flow images pre- and post-contrast were obtained using an HDI 3000 unit (ATL, Bothell, WA) before removing the mass for pathologic vascularity assessments. Image-processing techniques were used to obtain both the ultrasound and pathologic vascularity measurements. Multiple linear regression found significant correlations for ultrasonic vascularity measurements post contrast and pathology (P = 0.02 and 0.06). No correlations were found between pre-contrast ultrasound and pathology. In conclusion, post-contrast ultrasonic flow measures provide a non-invasive measure of breast tumor neovascularity. However, the patient population is small, and until further patients are analyzed, these conclusions are preliminary.  相似文献   

2.
We present a high-sensitivity near-infrared optical imaging system for noninvasive cancer detection and localization based on molecularly labeled fluorescent contrast agents. This frequency-domain system utilizes the interferencelike pattern of diffuse photon density waves to achieve high detection sensitivity and localization accuracy for the fluorescent heterogeneity embedded inside the scattering media. A two-dimensional localization map is obtained through reflectance probe geometry and goniometric reconstruction. In vivo measurements with a tumor-bearing mouse model by use of the novel Cypate-mono-2-deoxy-glucose fluorescent contrast agent, which targets the enhanced tumor glycolysis, demonstrate the feasibility of detection of a 2-cm-deep subsurface tumor in the tissuelike medium, with a localization accuracy within 2-3 mm.  相似文献   

3.
A diffuse near-infrared tomography system was used to measure dynamic changes in the absolute optical properties of the human breast that were induced through pressure applied to the tissue surface. Results from five subjects show that absorption and scattering coefficients changed measurably when pressure was increased and that these relative changes correlated with the subjects' body-mass index, indicating that the effect depends on tissue composition. Fitting the absolute absorption and scattering coefficients at six wavelengths to the molar absorption spectra of the three predominant chromophores revealed that both the average total hemoglobin and oxygen saturation increased by 10%, while water concentration decreased by more than 12%. These changes indicate that the pressure-induced variation is likely due to water displacement and vascular volume increase in the region being imaged, for mild application of pressure to the breast. These results suggest that the pressure applied during optical measurements of tissue may alter the tissue physiology, and care should be taken to factor this effect into the design of optical medical instrumentation. In addition, the technique provides a unique approach to measuring tissue elastic changes in vivo in the female breast and may offer a new method for dynamic contrast imaging based on elasto-optical measurements.  相似文献   

4.
Based on photon migration the new goal of diffuse optical imaging is to reveal optical contrasts in the depth of biological tissues. We discuss first the origin of contrast mechanism (absorption, fluorescence and scattering) used on diffuse optical imaging and spectroscopy. Then, various experimental approaches are described based on CW, pulsed and modulated light excitation and detection. Theoretical models which provide solutions for direct and inverse problems are presented using random walk theory. Finally two studies on breast imaging and on the use of fluorescence exogeneous markers are discussed in detail.  相似文献   

5.
基于乳腺解剖学结构和生理学特征,建立了适合应用于正常和嵌合肿瘤乳腺三维热传递的分析模型.该模型综合考虑了乳腺代谢产热、血液灌注和动静脉血管与乳腺组织之间的热交换等因素对温度场的影响.数值研究了正常和嵌合肿瘤乳腺的温度分布特征,着重分析代谢产热、血液灌注率、乳腺肿瘤的大小、位置与数目以及空气对流系数、环境温度等因素对乳腺温度分布的影响.结果表明:血液灌注率、代谢产热、乳腺肿瘤的大小、位置与数目对乳腺温度分布特征的影响明显;环境条件对嵌含肿瘤乳腺的体表温度分布影响较大.研究结果将有助于指导乳腺红外热图像的实验并为其定性分析提供重要的参考.  相似文献   

6.
Kim J  Oh J  Milner TE  Nelson JS 《Optics letters》2006,31(6):778-780
We introduce a novel contrast mechanism for imaging blood flow by use of magnetomotive optical Doppler tomography (MM-ODT), which combines an externally applied temporally oscillating high-strength magnetic field with ODT to detect erythrocytes moving according to the field gradient. Hemoglobin contrast was demonstrated in a capillary tube filled with moving blood by imaging the Doppler frequency shift, which was observed independently of blood flow rate and direction. Results suggest that MM-ODT may be a promising technique with which to image blood flow.  相似文献   

7.
A multimodality instrument that integrated optical or near-infrared spectroscopy into a magnetic resonance imaging (MRI) breast coil was used to perform a pilot study of image-guided spectroscopy on cancerous breast tissue. These results are believed to be the first multiwavelength spectroscopic images of breast cancer using MRI-guided constraints, and they show the cancer tumor to have high hemoglobin and water values, decreased oxygen saturation, and increased subcellular granularity. The use of frequency-domain diffuse tomography methods at many wavelengths provides the spectroscopy required for recovering maps of absorbers and scattering spectra, but the integration with MRI allows these data to be recovered on an image field that preserves high resolution and fuses the two data sets together. Integration of molecular spectroscopy into standard clinical MRI can be achieved with this approach to spectral tomography.  相似文献   

8.
Dynamic contrast-enhanced MRI (DCE-MRI) was used to noninvasively evaluate the effects of AG-03736, a novel inhibitor of vascular endothelial growth factor (VEGF) receptor tyrosine kinases, on tumor microvasculature in a breast cancer model. First, a dose response study was undertaken to determine the responsiveness of the BT474 human breast cancer xenograft to AG-013736. Then, DCE-MRI was used to study the effects of a 7-day treatment regimen on tumor growth and microvasculature. Two DCE-MRI protocols were evaluated: (1) a high molecular weight (MW) contrast agent (albumin-(GdDTPA)(30)) with pharmacokinetic analysis of the contrast uptake curve and (2) a low MW contrast agent (GdDTPA) with a clinically utilized empirical parametric analysis of the contrast uptake curve, the signal enhancement ratio (SER). AG-013736 significantly inhibited growth of breast tumors in vivo at all doses studied (10-100 mg/kg) and disrupted tumor microvasculature as assessed by DCE-MRI. Tumor endothelial transfer constant (K(ps)) measured with albumin-(GdDTPA)(30) decreased from 0.034+/-0.005 to 0.003+/-0.001 ml min(-1) 100 ml(-1) tissue (P<.0022) posttreatment. No treatment-related change in tumor fractional plasma volume (fPV) was detected. Similarly, in the group of mice studied with GdDTPA DCE-MRI, AG-013736-induced decreases in tumor SER measures were observed. Additionally, our data suggest that 3D MRI-based volume measurements are more sensitive than caliper measurements for detecting small changes in tumor volume. Histological staining revealed decreases in tumor cellularity and microvessel density with treatment. These data demonstrate that both high and low MW DCE-MRI protocols can detect AG-013736-induced changes in tumor microvasculature. Furthermore, the correlative relationship between microvasculature changes and tumor growth inhibition supports DCE-MRI methods as a biomarker of VEGF receptor target inhibition with potential clinical utility.  相似文献   

9.
We combine diffuse optical and correlation spectroscopies to simultaneously measure the oxyhemoglobin and deoxyhemoglobin concentration and blood flow in an adult human brain during sensorimotor stimulation. The observations permit calculation of the relative cerebral metabolic rate of oxygen in the human brain, for the first time to our knowledge, by use of all-optical methods. The feasibility for noninvasive optical measurement of blood flow through the skull of an adult brain is thus demonstrated, and the clinical potential of this hybrid, all-optical noninvasive, methodology can now be explored.  相似文献   

10.
We have developed a method of combined interpretation of spectral and spatial characteristics of diffuse reflection of biological tissues, which makes it possible to determine biophysical parameters of the tissue with a high accuracy in real time under conditions of their general variability. Using the Monte Carlo method, we have modeled a statistical ensemble of profiles of diffuse reflection coefficients of skin, which corresponds to a wave variation of its biophysical parameters. On its basis, we have estimated the retrieval accuracy of biophysical parameters using the developed method and investigated the stability of the method to errors of optical measurements. We have showed that it is possible to determine online the concentrations of melanin, hemoglobin, bilirubin, oxygen saturation of blood, and structural parameters of skin from measurements of its diffuse reflection in the spectral range 450–800 nm at three distances between the radiation source and detector.  相似文献   

11.
The detection of early-stage tumors in the breast by microwave imaging is challenged by both the moderate endogenous dielectric contrast between healthy and malignant glandular tissues and the spatial resolution available from illumination at microwave frequencies. The high endogenous dielectric contrast between adipose and fibroglandular tissue structures increases the difficulty of tumor detection due to the high dynamic range of the contrast function to be imaged and the low level of signal scattered from a tumor relative to the clutter scattered by normal tissue structures. Microwave inverse scattering techniques, used to estimate the complete spatial profile of the dielectric properties within the breast, have the potential to reconstruct both normal and cancerous tissue structures. However, the ill-posedness of the associated inverse problem often limits the frequency of microwave illumination to the UHF band within which early-stage cancers have sub-wavelength dimensions. In this computational study, we examine the reconstruction of small, compact tumors in three-dimensional numerical breast phantoms by a multiple-frequency inverse scattering solution. Computer models are also employed to investigate the use of exogenous contrast agents for enhancing tumor detection. Simulated array measurements are acquired before and after the introduction of the assumed contrast effects for two specific agents currently under consideration for breast imaging: microbubbles and carbon nanotubes. Differential images of the applied contrast demonstrate the potential of the approach for detecting the preferential uptake of contrast agents by malignant tissues.  相似文献   

12.
We compare two geometries of sources and detectors for optimizing the diffuse optical imaging resolution of brain activation in humans. Because of limitations in the instruments' dynamic range, most diffuse optical brain activation images have used only nonoverlapping measurements. We demonstrate theoretically and with a human experiment that a simple geometry of sources and detectors can provide overlapping measurements within the limitation of instrumentation dynamic range and produce an image resolution and localization accuracy that is twofold better.  相似文献   

13.
BOLD-contrast functional magnetic resonance imaging (MRI) was used to assess the evolution of tumor oxygenation and blood flow after administration of four different anesthetics: pentobarbital (60 mg/kg), ketamine/xylazine (80/8 mg/kg), fentanyl/droperidol (0.078/3.9 mg/kg), and isoflurane (1.5%). Gradient echo sequences were carried out at 4.7 Tesla in a TLT tumor model implanted in the muscle of NMRI mice. In parallel experiments, tumor blood flow and tumor pO2 were measured using the OxyLite/OxyFlo probe system. A comparison was made with the changes occurring in the skeletal muscle (host tissue). The signal intensity was dramatically decreased in tumors after administration of anesthetics, except isoflurane. These results correlated well with measurements of oxygenation and blood perfusion. Isoflurane produced constant muscle pO2 and blood perfusion although large transient fluctuations in pO2 and blood flow were reported in some tumors. Our results emphasize the need for careful monitoring of the effects of anesthesia when trying to identify new therapeutic approaches that are aimed at modulating tumor hemodynamics.  相似文献   

14.
聚吡咯(PPy)制备简单、生物相容性好,且在近红外(NIR)光谱范围内有很强的吸收,可作为一种良好的光热治疗试剂;同时,其NIR光吸收性质也可用于增强光学相干层析成像(OCT)的对比效果。因此,采用PPy对传统的OCT对比试剂——金纳米棒(GNR)进行表面修饰,有望获得对比效果更好且生物毒性较小的新型OCT对比试剂。选用吡咯为起始原料,在GNR表面进行一步简单的氧化聚合反应即可制备得到PPy修饰的金纳米棒(GNR-PPy)。利用紫外-可见吸收光谱,拉曼光谱和透射电子显微镜对制备的样品进行了分析和表征。构建小鼠荷瘤模型,以研究GNR-PPy对肿瘤OCT图像对比度的增强效果。采用中心波长为840 nm的OCT系统对注射了纳米粒子的肿瘤区域进行OCT成像。结果表明,肿瘤组织注射了GNR-PPy后,OCT信号衰减非常明显;与注射了GNR的OCT图像相比,840 nm光在GNR-PPy的OCT图像中的穿透深度明显更低。从OCT图像中抽提出一维的衰减曲线对OCT图像进行定量分析,发现注射有GNR-PPy肿瘤组织的OCT信号衰减系数明显高于注射了GNR的组织。表明,相对于GNR,GNR-PPy具有更好的OCT信号对比效果,这在增强肿瘤成像效果方面具有潜在应用价值。  相似文献   

15.
Our recent diffuse optical tomography experiments on human lower legs and forearms are presented using the time-resolved measuring system and image reconstruction algorithm based on the modified generalized pulse spectrum technique. It was shown that the spatial resolution and quantitativeness of the resultant images, was rather poor, and the interior blood vessels invisible in the absorption images. To clarify this issue, the influences of target contrast and size on the image reconstruction were investigated with simulated data. We have found that the quantitativeness of the reconstructed optical properties was prone to be spoiled by the small size ratio and high contrast of the interior targets to the background, and the incompleteness of information embedded in the featured data-types, evidently answers for the degradation of the image quality. It was shown in a further simulative investigation that the image quality could be substantially improved by making full use of the time-resolved data.  相似文献   

16.
We develope a method to optimize the resolution of diffuse optical tomographic instruments. Singular-value analysis of the tomographic weight matrix associated with specific data types, geometries, and optode arrangements is shown to provide a measure of image resolution. We achieve optimization of device configuration by monitoring the resolution measure described. We introduce this idea and demonstrate its utility by optimizing the spatial sampling interval and field-of-view parameters in the parallel-plane transmission geometry employed for diffuse optical breast imaging. We also compare resolution in transmission and remission geometries.  相似文献   

17.
《Magnetic resonance imaging》1996,14(9):1043-1051
The goal of this study was to use linear optimization techniques as a systematic method of cine phase contrast pulse sequence design and to apply this technique to the measurement of blood flow in vivo. The optimized waveforms were validated in a constant flow phantom with average velocities ranging from 5 to 50 cm/s. The same optimized sequence was also run in a segmented k-space variation with five phase encoding lines per segment. The magnetic resonance (MR) derived velocity measurements were accurate over the entire range of velocities tested (p < .05) in both cases. The same optimized pulse sequence was applied to the measurement of flow in the main pulmonary artery of five normal volunteers and compared with stroke volumes and cardiac outputs calculated from right ventricular volume measurements. These measurements showed a mean difference between the MR phase contrast calculated stroke volume and the volumetric stroke volume measurement of 9.8 ± 11.6%. The mean difference between the calculated phase contrast cardiac output and the volumetric cardiac output was 4.4 ± 10%. These results imply that optimization techniques are an efficient method for designing cine phase contrast pulse sequences.  相似文献   

18.
Conventional hyperthermia enhances tumor response to radiotherapy through thermal cell inactivation and vascular shut-down, whereas mild hyperthermia potentiates the effect of radiotherapy by improving tumor oxygenation. The work reported here was aimed at investigating whether 31P-magnetic resonance spectroscopy (31P-MRS) measurements of tumor bioenergetic status; i.e., the (PCr + NTPbeta)/Pi resonance ratio, and/or the spin lattice relaxation times, T1s, of the Pi and NTPbeta resonances can be used to distinguish between the effects of conventional and mild hyperthermia. BEX-t human melanoma xenografts were treated at 43.0 degrees C for 15 or 60 min, and bioenergetic status and T1s were measured as function-of-time after treatment. Hyperthermia-induced effects on tumor blood flow was measured by using the 86Rb uptake method. The morphology of the capillary network in treated and untreated tumors was studied by histologic examination. Tumors treated for 15 min showed increased blood flow and dilated capillaries, whereas tumors treated for 60 min showed decreased blood flow and capillary occlusions; i.e., 43.0 degrees C for 15 min was a treatment consistent with mild hyperthermia and 43.0 degrees C for 60 min was consistent with conventional hyperthermia treatment of BEX-t tumors. Bioenergetic status increased after treatment at 43.0 degrees C for 15 min, and decreased after treatment at 43.0 degrees C for 60 min, similar to the blood flow. Likewise, the T1 of the Pi resonance increased after treatment at 43.0 degrees C for 15 min, and decreased after treatment at 43.0 degrees C for 60 min. The T1 of the NTPbeta resonance showed a similar change as the T1 of the Pi resonance, but less pronounced. Consequently, 31P-MRS measurements of tumor bioenergetic status and the T1 of the Pi resonance may perhaps be utilized to distinguish between vascular effects of mild and conventional hyperthermia.  相似文献   

19.
Mohan N  Vakoc B 《Optics letters》2011,36(11):2068-2070
The intensity signal in optical coherence tomography contains information about the translational velocity of scatterers, and can be used to quantify blood flow. We apply principal component analysis to efficiently extract this information. We also study use of nonuniform temporal sampling of the intensity signal to increase the range of quantifiable flow velocities. We demonstrate this technique in simulation, phantom and in vivo blood flow measurements, and highlight its potential to enable three-dimensional wide-field mapping of blood flow using OCT.  相似文献   

20.
IntroductionThe presence of peritumorally impaired blood oxygenation-level dependent cerebrovascular reactivity (BOLD-CVR) has been unequivocally demonstrated in patients with diffuse glioma, and may have value to better identify tumor infiltration zone. Since BOLD-CVR does not measure hemodynamic changes directly, we performed additional MR perfusion studies to better characterize the peritumoral hemodynamic environment.MethodsSeventeen patients with WHO grade III and IV diffuse glioma underwent high resolution advanced hemodynamic MR imaging including BOLD-CVR and MR perfusion. The obtained multiparametric hemodynamic factors (i.e., regional cerebral blood flow (rCBF), relative cerebral blood volume (rCBV), mean transit time (MTT), time-to-peak (TTP) and BOLD-CVR, were analyzed within 10 concentric expanding 3 mm volumes of interest (VOIs) up to 30 mm from the tumor tissue mask.ResultsBOLD-CVR impairment was found within the tumor tissue mask and the peritumoral VOIs up to 21 mm as compared to the contralateral flipped CVR analysis (p<0.05). In the affected hemisphere, we observed positive spatial correlations including all VOIs between BOLD-CVR and rCBV values (r=0.27; p<0.001), rCBF (r=0.42; p<0.001) and a negative correlation between BOLD-CVR and TTP (r=-0.47; p<0.001).ConclusionsPeritumorally impaired BOLD-CVR is associated with concomitant hemodynamic alterations with severity correlating to tumor volume. The distribution of these multiparametric hemodynamic MRI patterns may be considered for future studies characterizing the hemodynamic peritumoral environment, thereby better identifying the extent of tumor infiltration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号