首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The conformational preferences and infrared and ultraviolet spectral signatures of two model beta-peptides, Ac-beta3-hPhe-beta3-hAla-NHMe (1) and Ac-beta3-hAla-beta3-hPhe-NHMe (2), have been explored under jet-cooled, isolated-molecule conditions. The mass-resolved, resonant two-photon ionization spectra of the two molecules were recorded in the region of the S0-S1 origin of the phenyl substituents (37,200-37,800 cm(-1)). UV-UV hole-burning spectroscopy was used to determine the ultraviolet spectral signatures of five conformational isomers of both 1 and 2. Transitions due to two conformers (labeled A and B) dominate the R2PI spectra of each molecule, while the other three are minor conformers (C-E) with transitions a factor of 3-5 smaller. Resonant ion-dip infrared spectroscopy was used to obtain single-conformation infrared spectra in the 3300-3700 cm(-1) region. The infrared spectra showed patterns of NH stretch transitions characteristic of the number and type of intramolecular H-bonds present in the beta-peptide backbone. For comparison with experiment, full optimizations of low-lying minima of both molecules were carried out at DFT B3LYP/6-31+G*, followed by single point MP2/6-31+G* and selected MP2/aug-cc-pVDZ calculations at the DFT optimized geometries. Calculated harmonic vibrational frequencies and infrared intensities for the amide NH stretch vibrations were used to determine the beta-peptide backbone structures for nine of the ten observed conformers. Conformers 1B, 1D, and 2A were assigned to double ring structures containing two C6 H-bonded rings (C6a/C6a), conformers 1A and 2B are C10 single H-bonded rings, conformers 1C and 2D are double ring structures composed of two C8 H-bonded rings (C8/C8), and conformers 1E and 2E are double ring/double acceptor structures in which two NH groups H-bond to the same C=O group, thereby weakening both H-bonds. Both 1E and 2E are tentatively assigned to C6/C8 double ring/double acceptor structures, although C8/C12 structures cannot be ruled out unequivocally. Finally, no firm conformational assignment has been made for conformer 2C whose unusual infrared spectrum contains one very strong H-bond with NH stretch frequency at 3309 cm(-1), a second H-bonded NH stretch fundamental of more typical value (3399 cm(-1)), and a third fundamental at 3440 cm(-1), below that typical of a branched-chain free NH. The single conformation spectra provide characteristic wavenumber ranges for the amide NH stretch fundamentals ascribed to C6 (3378-3415 cm(-1)), C8 (3339-3369 cm(-1)), and C10 (3381-3390 cm(-1)) H-bonded rings.  相似文献   

2.
The conformational preferences and infrared and ultraviolet spectral signatures of two model beta-peptides, Ac-beta3-hPhe-NHMe (1) and Ac-beta3-hTyr-NHMe (2), have been explored under jet-cooled, isolated molecule conditions. The mass-resolved, resonant two-photon ionization spectra of the two molecules were recorded in the region of the S0-S1 origin of the phenyl or phenol ring substituents, respectively. UV-UV hole-burning spectroscopy was used to determine that two conformations of 1 are present, with the transitions due to conformer A, with S0-S1 origin at 34431 cm(-1), being almost 20 times larger than those due to conformer B, with S0-S1 origin at 34404 cm(-1). Only one conformation of 2 was observed. Resonant ion-dip infrared spectroscopy provided single-conformation infrared spectra in the 3300-3700 cm(-1) region. The spectra of conformer A of both molecules have H-bonded and free amide NH stretch infrared transitions at 3400 and 3488 cm(-1), respectively, while conformer B of 1 possesses bands at 3417 and 3454 cm(-1). For comparison with experiment, full optimizations of all low-lying minima of 1 were carried out at the DFT B3LYP/6-31+G* and RIMP2/aug-cc-pVDZ levels of theory, and single point MP2/6-31+G* calculations at the DFT geometries. On the basis of the comparison with previous studies in solution and the calculated results, conformer A of 1 and 2 were assigned to a C6 conformer, while conformer B of 1 was assigned to a unique C8 structure with a weak intramolecular H-bond. The reasons for the preference for C6 over C8 structures and the presence of only two conformations in the jet-cooled spectrum are discussed in light of the predictions from calculations.  相似文献   

3.
The infrared spectra of CCl3SO2OCH2CF3 were obtained in the gaseous, liquid and solid states and complemented with the Raman spectrum of the liquid. Quantum chemistry calculations using the density functional theory (DFT) were used to predict the most stable geometry and conformation of the studied molecule. The harmonic vibrational frequencies and force field were also calculated. Comparison with related molecules and with the predicted frequencies was used as the basis for the assignment of the observed spectral features. Subsequently, a scaling of the original force field by means of a least square procedure was made in order to reproduce as well as possible the experimental frequencies, leading to a final root mean square deviation of 10.6 cm(-1).  相似文献   

4.
The gas phase infrared spectrum of 3-aminoacetophenone (3AAP) was measured in the range 5000-500cm(-1) and with a resolution of 0.5cm(-1). The Fourier transform Raman (FT-Raman) and Fourier transform infrared (FT-IR) spectra of 3AAP were recorded in the solid phase. Geometry optimizations were done without any constraint and several thermodynamic parameters were calculated for the minimum energy conformer at ab initio and density functional theory (DFT) levels invoking 6-311G(2df 2p) basis set and the results are compared with the experimental values. Harmonic-vibrational wavenumber was also calculated for the minimum energy conformer at ab initio and DFT levels using 6-31G(d,p) basis set and the results are compared with related molecules. With the help of specific scaling procedures, the observed vibrational wavenumbers in gas phase, FT-IR and FT-Raman spectra were analyzed and assigned to different normal modes of the molecule. Most of the modes have wavenumbers in the expected range, the error obtained was in general very low. The appropriate theoretical spectrogram for the FT-IR spectra of the title molecule is also constructed.  相似文献   

5.
Fourier-transform Raman and infrared spectra of 2-nitroanisole are recorded (4000-100 cm(-1)) and interpreted by comparison with respective theoretical spectra calculated using HF and DFT method. The geometrical parameters with C(S) symmetry, harmonic vibrational frequencies, infrared and Raman scattering intensities are determined using HF/6-311++G (d, p), B3LYP/6-311+G (d, p), B3LYP/6-311++G (d, p) and B3PW91/6-311++G (d, p) level of theories. A detailed vibrational spectral analysis has been carried out and assignments of the observed fundamental bands have been proposed on the basis of peak positions and relative intensities. The results of the calculations have been used to simulate IR and Raman spectra for the molecule that showed good agreement with the observed spectra. The SQM method, which implies multiple scaling of the DFT force fields has been shown superior to the uniform scaling approach. The vibrational frequencies and the infrared intensities of the C-H modes involved in back-donation and conjugation are also investigated.  相似文献   

6.
The trans-bis(glycine)nickel(II) complex was synthesized, and the Fourier transform infrared spectra in the regions 4000-370 cm(-1) and 700-30 cm(-1) were measured. Band deconvolution analysis and the second derivative of the infrared spectrum were also performed. The determination of the geometrical structure in the trans position of the glycine ligands around Ni(II) for the trans-bis(glycine)nickel(II) complex as well as the vibrational assignment were assisted by RHF/6-311G and by Density Functional Theory calculations, DFT:B3LYP/6-31G and 6-311G basis sets. A full discussion of the framework vibrational modes was done using as criteria the geometry study of distorted structures generated for the vibrational modes. Incidentally, Normal Coordinate Analysis was carried out for the Ni(N)(2)(O)(2) structural fragment. The calculated DFT spectra in the high- and low-energy regions agree with the observed ones.  相似文献   

7.
The cysteine dichloride cadmium(II) potassium was synthesized and the structural analysis was carried out through the following methods: determination of the C, H, N, S and O contents, thermogravimetry, infrared and Raman spectra. Assuming Cd-S, Cd-O (O-carboxilate) and Cd-N bonds, several hypothetical structures were calculated by means DFT: B3LYP/3-21G(d) quantum mechanical method. The calculations shows that the Cd-S and Cd-N central bonds are favoured in the anion complex formation [Cd(Cys)Cl2]-, being the stabilization energy 55.52 kcal mol(-1) lower than isotopomers with Cd-S and Cd-O central bonds. Features of the infrared and Raman spectra confirm the theoretical structural prediction. Full assignment of the vibrational spectra is proposed based on the DFT procedure, and in order to confirm the C-H, N-H, C-C, C-N, Cd-N, Cd-S and Cd-Cl stretching and the HNH and HCH bending, a normal coordinate analysis based on local symmetry force field for -SC(H2)C-, -CdN(H2)C- and -SCd(Cl2)N- fragments was carried out.  相似文献   

8.
Molecular structure and vibrational frequencies of the novel surface enolic species intermediate on Ag/Al2O3 have been investigated by means of density functional theory (DFT) calculations and in situ infrared spectroscopy. The geometrical structures and vibrational frequencies were obtained at the B3P86 levels of DFT and compared with the corresponding experimental values. Theoretical calculations show that the calculated IR spectra are in good agreement with the experimental spectroscopic results. In addition, the adsorption energy of enolic species on the Ag/Al2O3 catalyst surface was also evaluated. The reaction mechanism from C2H5OH to enolic species on Ag/Al2O3 catalyst was proposed.  相似文献   

9.
Aspartate hydroxo-aqua nickel (II) complex was synthesized and the structural analysis was carried out through the following methods: determination of the C, N, O and H contents, thermogravimetry and infrared spectrum. Several hypothetic structures were calculated by means of DFT: B3LYP/3-21G and B3LYP/6-311G quantum mechanical method. For [Ni(Asp)(OH)(H(2)O)] we have obtained the minimum of energy and no imaginary frequencies in the calculated infrared spectrum. Moreover, the experimental FT-infrared spectrum shows that the two N-H stretching follow the Bellamy-Williams relation proposed for primary amines. Coordination water bands were also observed in the infrared spectrum. For reasons of accomplishment, the Fourier transforms infrared and Raman spectra of acid aspartic were also discussed.  相似文献   

10.
To elucidate tentative assignments of metal-ligand modes of thiosemicarbazide complexes, a structural study and a assignment of the normal vibrations of 2-methylthiosemicarbazide copper(II) nitrate, [Cu(2MeTSC)(2)(NO(3))(2)] have been done through the ab initio DFT: pBP86/DN** procedure, and through the normal coordinate analysis (NCA). In the vibrational calculations, the elongated CuONO(2) bonds of the nitrate groups were considered in the CS and CN tautomers of the complex. DFT calculations had revealed that the infrared spectra can be well interpreted through the CN tautomer, failing in the prediction of the -NO(2) group wavenumbers. A little difference stabilization energy for the tautomers were found: for the CN tautomer was E=-3487,36376a.u., and for the CS tautomer, E=-3473,93598a.u. The observed combination bands at 1763.0 and at 1754.0 cm(-1) are an indicative that the -NO(3)(-) groups acts as monodentate ligands. Calculations had confirmed the experimental assignment of the infrared spectrum.  相似文献   

11.
The formation of 1-butyl-3-methylimidazolium-2-carboxylate in the mixture of CO(2) with 1-butyl-3-methylimidazolium acetate under mild conditions (298 K, 0.1 MPa) has been put in evidence in the liquid phase using Raman and infrared spectroscopy complemented by DFT calculations and NMR ((1)H, (13)C, (15)N) spectroscopy.  相似文献   

12.
The bis-serinenickel(II) complex was synthesized, and the Fourier-transforms infrared spectra in the regions 4000-370 and 700-30 cm(-1) was measured. The second derivative spectra and band deconvolution analysis was also obtained. Density functional theory calculations, DFT:B3LYP/6-311G, were performed for the determination of geometrical structure and vibrational assignment for the bis-serinenickel(II) complex. A full discussion of the framework vibrational modes was done using as criteria the geometry study of distorted structures generated for the vibrational modes. Incidentally, the normal coordinate analysis was carried out for the Ni(N)2(O)2 structural fragment. The calculated DFT spectra in the high and low energy regions agree well with the observed ones.  相似文献   

13.
The vibrational spectra of linear AlC(3) and AlC(3)Al, formed by trapping the products of the dual laser evaporation of aluminum and carbon rods in solid Ar at approximately 10 K, were observed. Fourier transform infrared (FTIR) measurements of (13)C isotopic shifts are in good agreement with the predictions of density functional theory (DFT) B3LYP6-311+G(3df) calculations, enabling the first assignments of the nu(3)(sigma(u)) and nu(4)(sigma(u)) fundamentals of ((3)Sigma(g) (+)) linear AlC(3)Al at 1624.0 and 528.3 cm(-1), respectively, and the nu(2)(sigma) vibrational fundamental of ((2)Pi) linear AlC(3) at 1210.9 cm(-1).  相似文献   

14.
The infrared and Raman spectra of KCF(3)SO(2) were obtained and the observed spectral features assigned to the expected normal modes of vibration. Besides, the vibrational properties of the CF(3)SO(2)(-) and CF(3)SeO(2)(-) related anions were studied by means of density functional theory (DFT) techniques. After obtaining the optimized geometrical parameters and conformations, the vibrational wavenumbers and the associated force constants were calculated. The original force fields in cartesian coordinates were transformed to local symmetry coordinates and subsequently scaled to reproduce the experimental wavenumbers. Some trends observed in the force constants of the studied species and of the related CF(3)SO(3)(-) anion could be explained by the differences in geometrical parameters.  相似文献   

15.
Laser-ablated W atoms react with CH4 in excess argon to form the CH3-WH, CH2=WH2, and CH[triple bond]WH3 molecules with increasing yield in this order of product stability. These molecules are identified from matrix infrared spectra by isotopic substitution. Tungsten methylidene and methylidyne hydride molecules are reversibly interconverted by alpha-H transfers upon visible and ultraviolet irradiations. Matrix infrared spectra and DFT/B3LYP calculations show that CH[triple bond]WH3 is a stable molecule with C3v symmetry, but other levels of theory were required to describe agostic distortion for CH2=WH2. Analogous reactions with Cr gave only CH3-CrH, which is calculated to be by far the most stable product.  相似文献   

16.
Methane activation by laser-ablated, excited Group 11 metal atoms has been carried out, leading to generation of CH(3)-MH, CH(3)-M, and CH(3)-MH(-), which are identified in the product infrared spectra on the basis of isotopic shifts and correlation with DFT calculated frequencies. The products reveal that C-H insertion by excited Au, Ag, and Cu readily occurs, and subsequent hydride-detachment or electron addition also follows. Each type of product has similar photochemical properties regardless of the metal. DFT computed energies reveal facile hydride dissociation and high electron affinities for the insertion complexes. The methyl metal species have the shortest C-M bonds, consistent with their highest calculated effective bond order, and the CH(3)-MH complexes have higher electron affinities than the metal atoms.  相似文献   

17.
The infrared, Raman, and inelastic neutron scattering (INS) spectra of two ortho-hydroxy aryl Schiff’s bases, 2-(N-methyliminoethyl)-phenol and 2-(N-methyl-α-iminoethyl)-phenol, were recorded. Ab initio molecular orbital calculations employing the DFT (B3LYP) method with the 6-31G** basis set for both compounds were done. Assignments of vibrational modes within the 3500–50 cm−1 spectral region were carried out. On the basis of the DFT calculations, four rotomers of 2-(N-methyl-α-iminoethyl)-phenol were analysed.  相似文献   

18.
The molecular structure, intramolecular hydrogen and vibrational frequencies of 4-methylamino-3-penten-2-one were investigated by a series of density functional theoretical (DFT) calculations and ab initio calculation at the post-Hartree-Fock (MP2) level. Fourier transform infrared and Fourier transform Raman spectra of this compound and its deuterated analogue were clearly assigned. The calculated geometrical parameters show a strong intramolecular hydrogen bond with a N...O distance of 2.622-2.670 A. This bond length is about 0.02 A shorter than that in its parent, 4-amino-3- penten-2-one which is in agreement with spectroscopic results. Furthermore, the conformations of methyl groups with respect to the plane of the molecule and with respect to each other were investigated.  相似文献   

19.
The infrared and Raman spectra of liquid and vapor-phase 2-fluoropyridine and 3-fluoropyridine have been recorded and assigned. Ab initio and DFT calculations were carried out to compute the molecular structures and to verify the vibrational assignments. The observed and calculated spectra agree extremely well. The ring bond distances of the fluoropyridines are very similar to those of pyridine except for a shortening of the C-N(F) bond in 2-fluoropyridine. The C-F bond stretching frequencies are similar to that in fluorobenzene reflecting the influence of the ring π bonding.  相似文献   

20.
Surface nitrate (NO3(-)) species on the Ag/Al2O3 play an important role in the selective catalytic reduction (SCR) of NOx. In this study, the formation and configuration of surface nitrate NO3(-)(ads) species on Ag/Al2O3 and Al2O3 in the oxidation of NO have been studied using in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and density functional theory (DFT) calculations. Different nitrates species (bridging, bidentate and monodentate) were observed by in situ DRIFTS and validated by DFT calculations results. Attention was especially focused on the proposal of two different bidentate nitrates species (a normal bidentate and an isolated bidentate). In addition, the thermal stability of different surface nitrate species was discussed based on the adsorption energies calculations, DRIFTS, and temperature-programmed desorption (TPD) results. It was suggested that the decomposition and desorption of the surface nitrate species could be controlled by kinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号