首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
We investigate the introduction of oxygen vacancies by the interaction of Pt with CeO2(111) (ceria) thin epitaxial film grown on Cu(111) and the influence of the vacancies on resistive switching behavior. For this purpose, we used X-ray photoelectron spectroscopy and conductive atomic force microscopy. We found out that after Pt deposition, the ceria film was partially reduced. By our estimation, the reduction occurs not only at the Pt/CeO2 interface, but also on the surface of the ceria film which is not covered by Pt, after Pt deposition and annealing. A different distribution of oxygen vacancies in the film proves to have an influence on the resistance switching process of the film. Finally, the proper balance between the reduced and the unreduced species in order to obtain relatively stable repeatable resistance switch with clear resistance window is discussed.  相似文献   

2.
Ag nanoparticles grown on reduced CeO2-x thin films have been studied by X-ray photoelec-tron spectroscopy and resonant photoelectron spectroscopy of the valence band to understand the effect of oxygen vacancies in the CeO2-x thin films on the growth and interfacial elec-tronic properties of Ag. Ag grows as three-dimensional particles on the CeO2-x(111) surface at 300 K. Compared to the fully oxidized ceria substrate surface, Ag favors the growth of smaller particles with a larger particle density on the reduced ceria substrate surface, which can be attributed to the nucleation of Ag on oxygen vacancies. The binding energy of Ag3d increases when the Ag particle size decreases, which is mainly attributed to the final-state screening. The interfacial interaction between Ag and CeO2-x(111) is weak. The resonant enhancement of the 4f level of Ce3+ species in RPES indicates a partial Ce4+→Ce3+ re-duction after Ag deposited on reduced ceria surface. The sintering temperature of Ag on CeO1.85(111) surface during annealing is a little higher than that of Ag on CeO2(111) surface, indicating that Ag nanoparticles are more stable on the reduced ceria surface.  相似文献   

3.
Studying the structures of metal clusters on oxide supports is challenging due to their various structural possibilities. In the present work, a simple rule in which the number of Au atoms in different layers of Aux clusters is changed successively is used to systematically investigate the structures of Aux (x=1–10) clusters on stoichiometric and partially reduced CeO2(111) surface by DFT calculations. The calculations indicate that the adsorption energy of a single Au atom on the surface, the surface structure, as well as the Au? Au bond strength and arrangement play the key roles in determining Aux structures on CeO2(111). The most stable Au2 and Au3 clusters on CeO2(111) are 2D vertical structures, while the most stable structures of Aux clusters (x>3) are generally 3D structures, except for Au7. The 3D structures of large Aux clusters in which the Au number in the bottom layer does not exceed that in the top layer are not stable. The differences between Aux on CeO2(111) and Mg(100) were also studied. The stabilizing effect of surface oxygen vacancies on Aux cluster structures depends on the size of Aux cluster and the relative positions of Aux cluster and oxygen vacancy. The present work will be helpful in improving the understanding of metal cluster structures on oxide supports.  相似文献   

4.
The determination of structure–performance relationships of ceria in heterogeneous reactions is enabled by the control of the crystal shape and morphology. Whereas the (100) surface, predominantly exposed in nanocubes, is optimal for CO oxidation, the (111) surface, prevalent in conventional polyhedral CeO2 particles, dominates in C2H2 hydrogenation. This result is attributed to the different oxygen vacancy chemistry on these facets. In contrast to oxidations, hydrogenations on CeO2 are favored over low‐vacancy surfaces owing to the key role of oxygen on the stabilization of reactive intermediates. The catalytic behavior after ageing at high temperature confirms the inverse face sensitivity of the two reaction families.  相似文献   

5.
A thin epitaxial CeO2 film was grown on a Cu(111) single crystal in order to investigate the mechanism of resistive memory/switching devices with an ultimately thin high-k dielectric film. A small amount of Pt was deposited on the CeO2 film and the Pt/CeO2/Cu structure was characterized by conductive atomic force microscopy and X-ray photoelectron spectroscopy. It was found that the grown epitaxial CeO2 film was fully oxidized, i.e., the valence of Ce atoms in the film was completely Ce4+. However, after the deposition of a small amount of Pt, it was revealed that Ce atoms were partially reduced to Ce3+ in full thickness of the film. The Pt/CeO2/Cu structure did not show switching behavior in resistance. The observed reduction of CeO2 film is considered to be responsible to the non-switching behavior. The thermodynamics of the reduction of the CeO2 film and the kinetics of oxygen diffusion in the reduced CeO2 film are discussed.  相似文献   

6.
The interaction of Pt particles with the regular CeO(2)(111) surface has been studied using Pt(8) clusters as representative examples. The atomic and electronic structure of the resulting model systems have been obtained through periodic spin-polarized density functional calculations using the PW91 exchange-correlation potential corrected with the inclusion of a Hubbard U parameter. The focus is on the effect of the metal-support interaction on the surface reducibility of ceria. Several initial geometries and orientations of Pt(8) with respect to the ceria substrate have been explored. It has been found that deposition of Pt(8) over the ceria surface results in spontaneous oxidation of the supported particle with a concomitant reduction of up to two Ce(4+) cations to Ce(3+). Oxygen vacancy formation on the CeO(2)(111) surface and oxygen spillover to the adsorbed particle have also been considered. The presence of the supported Pt(8) particles has a rather small effect (~0.2 eV) on the O vacancy formation energy. However, it is predicted that the spillover of atomic oxygen from the substrate to the metal particle greatly facilitates the formation of oxygen vacancies: the calculated energy required to transfer an oxygen atom from the CeO(2)(111) surface to the supported Pt(8) particle is only 1.00 eV, i.e. considerably smaller than 2.25 eV necessary to form an oxygen vacancy on the bare regular ceria surface. This strongly suggests that the propensity of ceria systems to store and release oxygen is directly affected by the presence of supported Pt particles.  相似文献   

7.
Molecular adsorption of formate and carboxyl on stoichiometric CeO2(111) and CeO2(110) surfaces was studied using periodic density functional theory (DFT+U) calculations. Two distinguishable adsorption modes (strong and weak) of formate are identified. The bidentate configuration is more stable than the monodentate adsorption configuration. Both formate and carboxyl bind at the more open CeO2(110) surface are stronger. The calculated vibrational frequencies of two adsorbed species are consistent with the experimental measurements. Finally, the effects of U parameters on the adsorption of formate and carboxyl over both CeO2 surfaces were investigated. We found that the geometrical configurations of two adsorbed species are not affected by different U parameters (U = 0, 5, and 7). However, the calculated adsorption energy of carboxyl pronouncedly increases with the U value while the adsorption energy of formate only slightly changes (<0.2 eV). The Bader charge analysis shows the opposite charge transfer occurs for formate and carboxyl adsorption where the adsorbed formate is negatively charge while the adsorbed carboxyl is positively charged. Interestingly, with the increasing U parameter, the amount of charge is also increased.  相似文献   

8.
A Cu(111) surface displays a low activity for the oxidation of carbon monoxide (2CO + O(2) → 2CO(2)). Depending on the temperature, background pressure of O(2), and the exposure time, one can get chemisorbed O on Cu(111) or a layer of Cu(2)O that may be deficient in oxygen. The addition of ceria nanoparticles (NPs) to Cu(111) substantially enhances interactions with the O(2) molecule and facilitates the oxidation of the copper substrate. In images of scanning tunneling microscopy, ceria NPs exhibit two overlapping honeycomb-type moire? structures, with the larger ones (H(1)) having a periodicity of 4.2 nm and the smaller ones (H(2)) having a periodicity of 1.20 nm. After annealing CeO(2)/Cu(111) in O(2) at elevated temperatures (600-700 K), a new phase of a Cu(2)O(1+x) surface oxide appears and propagates from the ceria NPs. The ceria is not only active for O(2) dissociation, but provides a much faster channel for oxidation than the step edges of Cu(111). Exposure to CO at 550-750 K led to a partial reduction of the ceria NPs and the removal of the copper oxide layer. The CeO(x)/Cu(111) systems have activities for the 2CO + O(2) → 2CO(2) reaction that are comparable or larger than those reported for surfaces of expensive noble metals such as Rh(111), Pd(110), and Pt(100). Density-functional calculations show that the supported ceria NPs are able to catalyze the oxidation of CO due to their special electronic and chemical properties. The configuration of the inverse oxide/metal catalyst opens new interesting routes for applications in catalysis.  相似文献   

9.
Nitrogen reduction reactions(NRR) under room conditions remain the challenge for N2 activation on metal-based catalysis materials. Herein, the M-doped Ce O2(111)(M = Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn) with oxygen vacancies, are systematically investigated by spin-polarized DFT + U calculations.We discuss briefly the situation of OVs on pure and reduced cerium, and we found that(1) doping TMs can promote the formation of oxygen defects, apart from Ti and V-dopant,(2) ...  相似文献   

10.
Effects of surface-adsorbed O and lattice O for the CeO2(111) surface on Hg removal has been researched. In this work, periodic calculations based on density functional theory (DFT) were performed with the on-site Coulomb interaction. Hg is oxidized to HgO via the surface-adsorbed O by overcoming a Gibbs free energy barrier of 114.1 kJ·mol−1 on the CeO2(111) surface. Mn and Fe doping reduce the activation Gibbs free energy for the Hg oxidation, and energies of 70.7 and 49.6 kJ·mol−1 are needed on Ce0.96Mn0.04O2(111) and Ce0.96Fe0.04O2(111) surfaces. Additionally, lattice O also plays an important role in Hg removal. Hg cannot be oxidized leading to the formation of HgO on the un-doped CeO2(111) surface owing to the inertness of lattice O, which can be easily oxidized to HgO on Ce0.96Mn0.04O2(111) and Ce0.96Fe0.04O2(111) surfaces. It can be seen that both surface-adsorbed O and lattice O play important roles in removing Hg. The present study will shed light on understanding and developing Hg removal technology on un-doped and Mn/Fe-doped CeO2(111) catalysts. © 2019 Wiley Periodicals, Inc.  相似文献   

11.
Studies with a series of metal/ceria(111) (metal=Co, Ni, Cu; ceria=CeO2) surfaces indicate that metal–oxide interactions can play a very important role for the activation of methane and its reforming with CO2 at relatively low temperatures (600–700 K). Among the systems examined, Co/CeO2(111) exhibits the best performance and Cu/CeO2(111) has negligible activity. Experiments using ambient pressure X‐ray photoelectron spectroscopy indicate that methane dissociates on Co/CeO2(111) at temperatures as low as 300 K—generating CHx and COx species on the catalyst surface. The results of density functional calculations show a reduction in the methane activation barrier from 1.07 eV on Co(0001) to 0.87 eV on Co2+/CeO2(111), and to only 0.05 eV on Co0/CeO2−x (111). At 700 K, under methane dry reforming conditions, CO2 dissociates on the oxide surface and a catalytic cycle is established without coke deposition. A significant part of the CHx formed on the Co0/CeO2−x (111) catalyst recombines to yield ethane or ethylene.  相似文献   

12.
Mo:CeO2, Si:CeO2 and Mo:Si:CeO2 films were made by the sol-gel dip-coating technique. XRD investigations of the analogously prepared powders revealed that particle grain size of CeO2 with the addition of Mo, Si or both decreased. FT/IR spectra of the corresponding films showed that no separate Mo-oxide phase was formed while the Si containing CeO2 films had nanocrystallites of ceria as well as amorphous silica. Electrochemical investigations (cyclic voltammetry, chronocoulometry) performed in protic (0.1M LiOH) and aprotic (1M LiClO4/propylene carbonate(PC)) electrolytes showed that additions of Mo:, Si: and Mo: Si:-to ceria increased ion storage ability. The suitability of films as optically passive counter electrodes was demonstrated by making electrochromic cells with asymmetric and symmetric configurations using a Li+ doped ionic conductor (ormolyte®) and an electrochromic tungstophosphoric acid (WPA)/TiO2 gel film.  相似文献   

13.
黄昶  王志强  龚学庆 《催化学报》2018,39(9):1520-1526
低碳烯烃一直以来都是化工行业非常重要的基础原料,一般采用烷烃直接热裂解制得,但该方法耗能很大,经济价值有限.近年来,人们开始尝试利用氧化脱氢反应(ODH)方法制备低碳烯烃,并取得了巨大的研究进展,其中稀土氧化物负载钒氧化物催化剂具有良好的低碳烷烃氧化脱氢性能.本文分析了前人对于钒氧化物负载在CeO2表面的计算研究结果,并选取了最具代表性的VO3/CeO2(111)作为烷烃ODH制烯烃的模型催化剂,详细研究了丙烷在该催化剂体系中发生ODH反应机理.通过使用密度泛函理论,对丙烷在VO3/CeO2(111)催化剂上断裂第一根和第二根碳氢键的反应过程进行了理论模拟,并对比了丙烷制丙烯中碳氢键断裂先后的活化能及VO3/CeO2(111)催化剂材料自身的电子性质.结果表明,该催化剂的电子结构在丙烷氧化脱氢反应中扮演关键角色.在丙烷分子断裂第一根碳氢键的反应过程中,会产生两个自由电子,对其电子结构分析发现,其中的一个自由电子会局域在由VO3/CeO2(111)催化剂中五个相关氧原子的2p轨道所形成的新发生局域空轨道(NELS)上,这个独特的新发生局域空轨道只能接受一个电子,另一个电子则会通过丙基在CeO2表面发生吸附将电子传递到CeO2表面的Ce原子上;当丙烷分子进一步发生第二根碳氢键断裂反应时,同样会产生两个新的局域电子,其中一个电子局域在Ce的4f轨道上,此时CeO2表面存在两个局域电子,相互排斥,导致该催化剂上丙烷断裂第二根碳氢键所需的活化能远高于第一根碳氢键.综上,本文对VO3/CeO2(111)催化剂上低碳烷烃ODH反应独特的催化活性和选择性给出了较为细致的分析和解释.  相似文献   

14.
The development of efficient photocatalytic H2-evolution materials requires both rapid electron transfer and an effective interfacial catalysis reaction for H2 production. In addition to the well-known noble metals, low-cost and earth-abundant non-noble metals can also act as electron-transfer mediators to modify photocatalysts. However, as almost all non-noble metals lack the interfacial catalytic active sites required for the H2-evolution reaction, the enhancement of the photocatalytic performance is limited. Therefore, the development of new interfacial active sites on metal-modified photocatalysts is of considerable importance. In this study, to enhance the photocatalytic evolution of H2 by Ni-modified TiO2, the formation of NiSx as interfacial active sites was promoted on the surface of Ni nanoparticles. Specifically, the co-modified TiO2/Ni-NiSx photocatalysts were prepared via a two-step process involving the photoinduced deposition of Ni on the TiO2 surface and the subsequent formation of NiSx on the Ni surface by a hydrothermal reaction method. It was found that the TiO2/Ni-NiSx photocatalysts exhibited enhanced photocatalytic H2-evolution activity. In particular, TiO2/Ni-NiSx(30%) showed the highest photocatalytic rate (223.74 μmol h?1), which was greater than those of TiO2, TiO2/Ni, and TiO2/NiSx by factors of 22.2, 8.0, and 2.2, respectively. The improved H2-evolution performance of TiO2/Ni-NiSx could be attributed to the excellent synergistic effect of Ni and NiSx, where Ni nanoparticles function as effective mediators to transfer electrons from the TiO2 surface and NiSx serves as interfacial active sites to capture H+ ions from solution and promote the interfacial H2-evolution reaction. The synergistic effect of the non-noble metal cocatalyst and the interfacial active sites may provide new insights for the design of highly efficient photocatalytic materials.  相似文献   

15.
孙大鹏  李微雪 《催化学报》2013,34(5):973-978
采用密度泛函理论系统研究了超薄氧化物膜/金属体系FeO/Pt和FeO2/Pt及其表面不同区域(FCC,HCP和TOP)的几何结构、电子性质及氧的活性.研究发现,表面O-Fe高度差δz作为一个重要的特征结构参数直接影响局域表面静电势和表面氧的结合能: δz越大,静电势越大,氧的结合能越弱.计算发现,在FeO/Pt体系中,δz顺序为FCC > HCP > TOP,而FeO2/Pt中是FCC > TOP > HCP.此外,在FeO/Pt中,电荷转移方向是从氧化物膜到衬底,Fe的表观价态为+2.36,表面功函较纯Pt(111)的变化可忽略; 而FeO2/Pt中,电荷转移的方向是从衬底到氧化物,Fe的表观价态为+2.95,表面功函较纯Pt增加1.24 eV.进一步分析了电荷转移和表面偶极对电子性质的作用机制.这些研究结果对于认识超薄氧化物薄膜对表面几何结构、电子性质、表面氧活性的调制具有重要的启示意义.  相似文献   

16.
The electronic properties of Pt nanoparticles deposited on CeO(2)(111) and CeO(x)/TiO(2)(110) model catalysts have been examined using valence photoemission experiments and density functional theory (DFT) calculations. The valence photoemission and DFT results point to a new type of "strong metal-support interaction" that produces large electronic perturbations for small Pt particles in contact with ceria and significantly enhances the ability of the admetal to dissociate the O-H bonds in water. When going from Pt(111) to Pt(8)/CeO(2)(111), the dissociation of water becomes a very exothermic process. The ceria-supported Pt(8) appears as a fluxional system that can change geometry and charge distribution to accommodate adsorbates better. In comparison with other water-gas shift (WGS) catalysts [Cu(111), Pt(111), Cu/CeO(2)(111), and Au/CeO(2)(111)], the Pt/CeO(2)(111) surface has the unique property that the admetal is able to dissociate water in an efficient way. Furthermore, for the codeposition of Pt and CeO(x) nanoparticles on TiO(2)(110), we have found a transfer of O from the ceria to Pt that opens new paths for the WGS process and makes the mixed-metal oxide an extremely active catalyst for the production of hydrogen.  相似文献   

17.
In situ infrared spectroscopy was applied to elucidate the reaction mechanism of CO hydrogenation over Pd/CeO2. Instead of direct dissociation of CO, a new reaction pathway is proposed for methane formation, involving geminal dicarbonyl intermediates and (HCO)2(a) intermediates, which may be located on the surface of Pd covered with thin layers of reduced ceria (SMSI effect). Transformation of methane formation sites into methanol formation ones by the oxidation with water vapor formed during the CO?H2 reaction is proposed, which may be located on the Pd (111) planes adjacent to ceria support.  相似文献   

18.
Ceria is an important component in three-way catalysts for the treatment of automobile exhaust gases owing to its ability to store and release oxygen, a property known as the oxygen storage capacity. Much effort has been focused on increasing the OSC of ceria, and one avenue of exploration is the ability to fabricate CeO(2)-based catalysts, which expose reactive surfaces. Here we show how models for a polycrystalline CeO(2) thin film, which expose the (111), (110), and dipolar (100) surfaces, can be synthesized. This is achieved by supporting the CeO(2) thin film on an yttrium-stabilized zirconia substrate using a simulated amorphization and recrystallization strategy. In particular, the methodology generates models which reveal the atomistic structures present on the surface of the reactive faces and provides details of the grain-boundary structures, defects (vacancies, substitutionals, and clustering), and epitaxial relationships. Such models are an important first step in understanding the active sites at the surface of a catalytic material.  相似文献   

19.
The states of components of highly efficient Pt/CeO2 catalysts for low-temperature oxidation of carbon monoxide are studied in detail by X-ray photoelectron spectroscopy (XPS). Using the precise calibration of the spectra relative to the internal standard and the fitting of Ce3d and Pt4f spectra by elementary doublets, we found the features of the platinum interaction with the ceria lattice. It is shown that when the codeposition technique is used, depending on the quality of stock solutions, it is possible to obtain both homogeneous solid solutions of platinum in the ceria lattice and solutions containing polyatomic platinum associates of the (PtO) m type. It is found that when homogeneous PtCeO x solid solutions are stored in air at room temperature, the homogeneous solutions slowly pass into the state of solutions with platinum associates. Mechanical mixtures of metallic platinum and ceria nanoparticles, synthesized by laser ablation, were also investigated in the course of their annealing in the air. The results obtained from the Pt4f spectra completely confirm the specific features of the interaction of platinum with ceria.  相似文献   

20.
The reactions of methanol with and without O2 were studied on a flat, highly crystalline CeO2(100) thin‐film surface with ambient pressure XPS. In the absence of O2, the ambient pressure XPS results indicate that in both low‐pressure (≤10−5 Torr) and high‐pressure regimes (≥10−1 Torr), the dominant surface species is methoxy. Methanol decomposition substantially reduces the ceria and CX deposit build‐up on the surface. When O2 is present, CX does not accumulate on the surface and the dominant surface species is different in the low‐pressure and high‐pressure regimes. Methoxy dominates at low pressure, while formate dominates at the higher pressure. The type of surface species appears to be related to the ability of O2 to fully oxidize the ceria surface during the methanol reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号