首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
水系锌离子电池(aqueous zinc-ion batteries,AZIBs)具有高安全性、低生产成本、锌资源丰富和环境友好等优点,被认为是未来大规模储能系统中极具发展前景的储能装置。目前,AZIBs的研究关键之一在于开发具有稳定结构和高容量的锌离子可脱嵌正极材料。钒基化合物用作AZIBs正极时,表现出可逆容量高和结构丰富可变等特点,受到了广泛的关注和研究。然而,钒基化合物的储锌机理较复杂,不同材料通常表现出各异的电化学性能和储能机理。在本综述中,我们全面地阐述了钒基化合物的储能机制,并探讨了钒基材料在水系锌离子电池中的应用和发展近况,以及它们的性能优化策略。在此基础上,也进一步地展望了水系锌离子电池及其钒基正极材料的发展方向。  相似文献   

2.
《中国化学快报》2023,34(7):107839
With the quick development of sustainable energy sources, aqueous zinc-ion batteries (AZIBs) have become a highly potential energy storage technology. It is a crucial step to construct desired electrode materials for improving the total performance of AZIBs. In recent years, considerable efforts have focused on the modification of vanadium-based cathode materials. In this review, we summarized defect engineering strategies of vanadium-based cathodes, including oxygen defects, cation vacancies and heterogeneous doping. Then, we discussed the effect of various defects on the electrochemical performance of electrode materials. Finally, we proposed the future challenges and development directions of V-based cathode materials.  相似文献   

3.
As an emerging energy storage device with high-safety aqueous electrolytes, low-cost, environmental benignity and large-reserves, the rechargeable aqueous zinc-ion batteries(AZIBs) have attracted more and more attention. Vanadium-based compounds are also supposed as the potential candidate cathode materials for AZIBs due to their wide variety of phases, variable crystal structures and high theoretical capacity. In this review, the recent progress in the development of vanadium-based materials wa...  相似文献   

4.
Further enhancement in the energy density of rechargeable lithium batteries calls for high-voltage cathode materials and stable anodes,as well as matched high-voltage electrolytes without compromising the overall property of batteries.Sulfone-based electrolytes have aroused great interest in recent years owing to their wide electrochemical window and high safety.However,significant challenges such as the complexity of synthesis,high melting point(typically above room temperature),high viscosity,and their poor compatibility with graphite-based anodes have drastically impeded their practical applications.In this review,recent progress of sulfone solvents in high energy density rechargeable lithium batteries is summarized theoretically and experimentally.More importantly,general improvement methods of sulfone-based electrolytes,such as adding additives and cosolvents,structural modifications of sulfo ne,superconcentrated salt strategy are briefly discussed.We expect that this review provides inspiration for the future developments of sulfone-based high-voltage electrolytes(SHVEs) and their widespread applications in high specific energy lithium batteries.  相似文献   

5.
贠潇如  陈宇方  肖培涛  郑春满 《电化学》2022,28(11):2219004
水系锌离子电池具有功率密度高、环境友好、安全性高、低成本和锌资源丰富等优点,被认为具有潜力成为下一代电化学储能系统。然而,正极材料较差的电化学性能制约了水系锌离子电池的未来发展。尽管氧化锰、氧化钒、普鲁士蓝类似物、有机材料等多种材料已被广泛研究,设计具有高性能的理想正极材料仍面临着巨大挑战。无氧钒基化合物由于具有高的电导率、大的层间距、低的离子扩散势垒和高的理论比容量,受到越来越多的关注。本文总结了无氧钒基化合物的研究进展,包括电极材料的设计、改善其电化学性能的有效途径以及复杂的储能机制,提出了无氧钒基化合物目前面临的挑战和未来的发展前景,为进一步制备新型高性能钒基正极材料提供指导。  相似文献   

6.
《中国化学快报》2023,34(8):107885
Aqueous zinc ion batteries (AZIBs) have attracted much attention in recent years due to their high safety, low cost, and decent electrochemical performance. However, the traditional electrodes development process requires tedious synthesis and testing procedures, which reduces the efficiency of developing high-performance battery devices. Here, we proposed a high-throughput screening strategy based on first-principles calculations to aid the experimental development of high-performance spinel cathode materials for AZIBs. We obtained 14 spinel materials from 12,047 Mn/Zn-O based materials by examining their structures and whether they satisfy the basic properties of electrodes. Then their band structures and density of states, open circuit voltage and volume expansion rate, ionic diffusion coefficient and energy barrier were further evaluated by first-principles calculations, resulting in five potential candidates. One of the promising candidates identified, Mg2MnO4, was experimentally synthesized, characterized and integrated into an AZIB based cell to verify its performance as a cathode. The Mg2MnO4 cathode exhibits excellent cycling stability, which is consistent with the theoretically predicted low volume expansion. Moreover, at high current density, the Mg2MnO4 cathode still exhibits high reversible capacity and excellent rate performance, indicating that it is an excellent cathode material for AZIBs. Our work provides a new approach to accelerate the development of high-performance cathodes for AZIBs and other ion batteries.  相似文献   

7.
近年来,钠离子电池因其原材料丰富、资源成本低廉及安全环保等突出优点,在电化学规模储能领域和低速电动车中具有广阔的应用前景。聚阴离子型磷酸盐具有稳定的框架结构、合适的工作电压和快速的离子扩散路径等特征,是一类极具研究价值和应用前景的钠离子电池正极材料。但是,磷酸盐正极材料电子导电性差和比能量偏低等缺陷限制了其走向实际应用。研究工作者通过体相结构调控和微纳结构设计等手段进行改性研究,旨在提升磷酸盐正极材料的性能表现、推动钠离子储能体系的研究开发。本文综述了钠离子电池磷酸盐正极材料的最新进展,包括正磷酸盐、焦磷酸盐、氟磷酸盐和混合磷酸盐化合物,通过对磷酸盐材料的晶体结构、储钠机理和改性策略等方面的综述,揭示材料成分、结构与电化学性能之间的本征关系,为聚阴离子磷酸盐正极材料的持续改性和新型磷酸盐高压正极材料的探索开发提供指导。  相似文献   

8.
全固态锂电池因其优异的安全性和高能量密度成为储能领域的重点研究内容。硫化物电解质因其高离子电导率、良好电极/电解质界面兼容性及易加工性,有力推动了硫化物基全固态锂电池的发展。本文首先从实验室研究阶段出发,从正极/电解质界面、硫化物电解质自身及负极/电解质界面三方面阐述了硫化物基全固态锂电池现阶段面临的主要问题,并介绍了相关的解决策略。随后从硫化物基全固态锂电池的实用化生产角度出发,介绍了电极/电解质膜的制膜工艺、软包电池的装配相关问题、高载正极的设计及硫化物电解质的大规模、低成本制备。最后展望了硫化物基全固态锂电池的未来研究方向和发展趋势。  相似文献   

9.
Among the large energy storage batteries, the sodium ion batteries(SIBs) are attracted huge interest due to the fact of its abundant raw materials and low cost, and has become the most promising secondary battery. Tunnel-type sodium manganese oxides(TMOs) are industrialized cathode materials because of their simple synthesis method and proficient electrochemical performance. Na0.44MnO2(NMO) is considered the best candidate material for all tunnel-type structural materials. ...  相似文献   

10.
《中国化学快报》2023,34(7):107760
Rechargeable aqueous zinc-ion batteries (AZIBs) are attracting tremendous attention because of their intrinsic merits such as high safety and low cost. Cathode plays a critical role in enhancing the electrochemical performance of AZIBs. However, it is difficult to design a robust and high-efficiency cathode material and further implement the commercialization of AZIBs. Metal-organic frameworks (MOFs) electroactive compounds are attractive to serve as the cathode of AZIBs due to their unique porosity and crystal structures, resource renewability and structural diversity. In this work, a calcium-pure terephthalates acid framework (Ca-PTA·3H2O) was synthesized by facile hydrolysis and cationic exchange method, then explored as a novel cathode for AZIBs. The results highlight a high specific capacity of 431 mAh/g (0.51 mAh/cm2) at a current density of 50 mA/g, and excellent cycle performance with capacity retention of ∼90% after 2700 cycles at 500 mA/g. The following up characterizations investigate the reversible zinc storage mechanism in detail. This experiment made a specific contribution to the exploration of the new MOF as a competitive cathode for AZIBs.  相似文献   

11.
Ying Liu  Xiang Wu 《中国化学快报》2022,33(3):1236-1244
Commercial lithium-ion batteries(LIBs) have been widely used in various energy storage systems. However, many unfavorable factors of LIBs have prompted researchers to turn their attention to the development of emerging secondary batteries. Aqueous zinc ion batteries(AZIBs) present some prominent advantages with environmental friendliness, low cost and convenient operation feature. Mn O2electrode is the first to be discovered as promising cathode material. So far, manganese-based oxides have made...  相似文献   

12.
Aqueous Zn-ion batteries (AZIBs) are considered as promising large-scale energy storage devices due to their high safety and low cost. Transition metal dichalcogenides (TMDs) as the potential aqueous Zn-storage cathode materials are under the research spotlight because of their facile 2D ion-transport channels and weak electrostatic interactions with Zn2+. In this concept article, we summarize the intrinsic structural features and aqueous Zn-storage mechanisms of the TMDs-based electrodes. More significantly, the latest design concepts of TMDs materials for high-performance AZIBs are discussed in detail from three aspects of interlayer expansion engineering, phase transition engineering, and structure defects engineering. Finally, the current challenges facing TMDs cathodes and possible remedies are outlined for future developments towards efficient, rapid, and stable aqueous Zn-ion storage.  相似文献   

13.
《中国化学快报》2023,34(4):107540
Aqueous zinc ion batteries (AZIBs) with the merits of low cost, low toxicity, high safety, environmental benignity as well as multi-valence properties as the large-scale energy storage devices demonstrate tremendous application prospect. However, the explorations for the most competitive manganese-based cathode materials of AZIBs have been mainly limited to some known manganese oxides. Herein, we report a new type of cathode material NH4MnPO4·H2O (abbreviated as AMPH) for rechargeable AZIBs synthesized through a simple hydrothermal method. An in-situ electrochemical strategy inducing Mn-defect has been used to unlock the electrochemical activity of AMPH through the initial charge process, which can convert poor electrochemical characteristic of AMPH towards Zn2+ and NH4+ into great electrochemically active cathode for AZIBs. It still delivers a reversible discharge capacity up to 90.0 mAh/g at 0.5 A/g even after 1000th cycles, which indicates a considerable capacity and an impressive cycle stability. Furthermore, this cathode reveals an (de)insertion mechanism of Zn2+ and NH4+ without structural collapse during the charge/discharge process. The work not only supplements a new member for the family of manganese-based compound for AZIBs, but also provides a potential direction for developing novel cathode material for AZIBs by introducing defect chemistry.  相似文献   

14.
《中国化学快报》2023,34(7):107783
Lithium-sulfur (Li-S) batteries have been regarded as the candidate for the next-generation energy storage system due to the high theoretical specific capacity (1675 mAh/g), energy density (2600 Wh/kg) and the abundance of elemental sulfur, but the application of Li-S batteries is impeded by a series of problems. Recently, all-solid-state Li-S batteries (ASSLSBs) have drawn great attention because many drawbacks such as safety issues caused by metallic lithium anodes and organic liquid electrolytes can be overcome through the use of solid-state electrolytes (SEs). However, not only the problems brought by sulfur cathodes still exist, but more trouble arouses from the interfaces between SEs and cathodes, hampering the practical application of ASSLSBs. Therefore, in order to deal with the problems, enormous endeavors have been done on ASSLSB cathodes during the past few decades, including engineering of cathode active materials, cathode host materials, cathode binder materials and cathode structures. In this review, the electrochemical mechanism and existing problems of ASSLSBs are briefly introduced. Subsequently, the strategies for developing cathode materials and designing cathode structures are presented. Then there follows a brief discussion of SE problems and expectations, and finally, the challenges and perspectives of ASSLSBs are summarized.  相似文献   

15.
任岩  文焱  连芳  仇卫华 《化学通报》2015,78(2):107-112
目前提高锂离子电池能量密度的途径主要有提高锂离子电池的工作电压和应用高工作电压的正极材料,因此,锂离子电池高电压电解液的研究和开发势在必行。本文概述了锂离子电池电解液和高电压电解液的特点,介绍了前线轨道理论中的HOMO和LUMO对电解液设计的指导意义。尤其是结合日本知名企业和科研机构在高电压电解液方面的研究成果,阐述了两种实现电解质高电压化的途径,即提高溶剂本身的耐氧化性和使用添加剂,总结了氟代酯、氟化醚、硼酸酯、砜类和耐氧化添加剂等用于高电压电解液中的关键物质类型,并讨论了目前高电压电解液研究开发所带来的启示。  相似文献   

16.
Tetracyanoquinodimethane (TCNQ) electrode material has achieved excellent performance in aqueous zinc-ion batteries (AZIBs). However, fundamental understanding about effect of substitutes on electrochemical performance of TCNQ remain unknown. In this work, the effects of fluorine (F) as an electron-absorbing group on the structure, morphology and electrochemical performance of TCNQ and storage mechanism of TCNQ in AZIBs are discussed. Theoretical calculation proves that the introduction of fluorine atoms decreases lowest unoccupied molecular orbital (LUMO) energy of TCNQ thus affect the redox potential. Electrochemical performance of TCNQ/Fluoro-7,7,8,8-tetracyanoquinodimethane (FTCNQ)/2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) is evaluated from 25 °C to −20 °C in AZIBs. Results tend out that with the increasing substituents of F on TCNQ molecular, their stability in AZIBs decrease. Dipole moment calculation further shows that the introduction of fluorine atoms is inconducive to the stability of the electrode material in aqueous solution. Ex-situ characterization demonstrate that electron withdrawing groups do not change the REDOX center of TCNQ electrode materials. Our work provides a new thought for the selection of the electrode material in AZIBs.  相似文献   

17.
Organic electrode materials (OEMs) are being investigated as promising candidates for aqueous zinc-ion batteries (AZIBs) owing to their environmental friendliness, cost-effectiveness, and structural diversity, and tunability. Understanding the correlation between structural regulation of OEMs and their electrochemical property in AZIBs is vital to rational design of OEMs. Herein, we first discuss the fundamentals of the energy storage mechanism of OEMs. Then, strategies to improve the electrochemical performance, including the specific capacity, voltage, rate capability, and cycling stability, are elaborated from the perspective of molecular engineering. Finally, we share our views on the remaining challenges and prospects of OEMs in AZIBs.  相似文献   

18.
全固态电池因其较高的安全性和能量密度而成为下一代电动汽车和智能电网用储能器件的重点研究方向之一。开发具有高室温锂离子电导率、化学/电化学稳定性优异、对电极材料兼容性优异等特点的固态电解质材料是推动全固态电池发展的重要研究课题之一。硫化物电解质因其相对较高的室温电导率(~10−3 S∙cm−1)、较低的电解质/电极固-固界面阻抗等优点而在众多无机固体电解质材料中成为研究热点。本文基于作者多年研究成果和当前国内外发表的相关工作,从电解质的结构、离子传导、合成、综合性能改善及在全固态电池中的应用等方面系统总结了锂硫银锗矿固态电解质材料研究,并分析了该类电解质面临的问题和挑战,最后探讨了其未来可能的研究方向和发展趋势。  相似文献   

19.
近年来,钠离子电池由于资源丰富、价格低廉等特点,逐渐成为储能领域的研究热点。然而,钠离子具有较大的离子半径和较慢的动力学速率,成为制约储钠材料发展的主要因素,而发展高性能的嵌钠正极材料是提高钠离子电池比能量和推进其应用的关键。本文详细综述了目前钠离子电池研究的正极材料体系,包括过渡金属氧化物、聚阴离子类材料、普鲁士蓝类化合物、有机分子和聚合物、非晶材料等,并结合这几年我们课题组在正极方面的研究工作,探讨了材料的结构和电化学性能的关系,分析了提高正极材料可逆容量、电压、结构稳定性的可能途径,为钠离子电池电极材料的发展提供参考。  相似文献   

20.
水系储能器件具有固有的高安全性、环境友好性和成本低的优势,在未来智能电网、便携式/可穿戴电子产品等领域显示出巨大的应用潜力。然而水的热力学分解电压低、冰点高,导致水系电解液电化学稳定电压窗口窄以及凝固点高,极大地限制了水系储能器件的能量密度与宽温域应用。因此,设计耐高电压、抗冻的水系电解液,成为水系储能器件大规模、多场景应用的关键。本文系统综述了高电压/宽温域水系碱金属离子电池电解液设计的研究进展,从热力学和动力学角度出发,分别重点介绍提高电解液电压窗口和工作温度范围的各类策略以及相关作用机制。进一步提出宽温域、高压水系电解液的潜在设计思路,并对高性能水系碱金属离子电池的发展方向进行展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号