首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
基于表面增强拉曼光谱的重金属离子检测   总被引:1,自引:0,他引:1  
以对巯基苯甲酸为拉曼标记和自组装修饰分子, 在光亮金基底上修饰后作为检测基底, 在金纳米粒子表面修饰后获得具有表面增强拉曼光谱信号的标记金溶胶. 修饰的基底及纳米离子通过重金属离子与羧基端的配位而发生相互作用, 最终形成“金属基底-对巯基苯甲酸/重金属离子/对巯基苯甲酸-金属纳米颗粒”的三明治结构. 采用扫描电镜表征纳米粒子的组装及以表面增强拉曼光谱检测表面标记分子的信号, 以此实现重金属离子的检测. 以强螯合剂EDTA溶液淋洗三明治结构, 使重金属离子与金属基底以及纳米颗粒上的羧基的配位作用断裂, 获得可再次利用的修饰金基底.  相似文献   

2.
建立了一种基于金纳米粒子与巯基相互作用的在磁性高分子复合微球表面高效组装功能分子的新方法.首先制备了粒径均一的介孔磁性纳米粒子簇(MSP),利用蒸馏沉淀技术在MSP上包覆一层―S―S―键交联的聚甲基丙烯酸壳层(P(MAA-Cy)),并将直径10~30 nm的金纳米粒子沉积在MSP@P(MAACy)复合微球表面,从而获得MSP@P(MAA-Cy)-Au NP复合微球.调控HAu Cl4的投料量可以控制金纳米粒子沉积数量和尺寸.利用金粒子和巯基之间的强相互作用,将巯基修饰的荧光分子快速可控组装在MSP@P(MAA-Cy)-Au NP微球上.作为模型示范,实现了一次在MSP@P(MAA-Cy)-Au NP微球上快速固定单种或多种功能分子,为即时、高效、定量在功能微球(靶向药物载体等)上修饰功能分子提供了一种可选择的解决方案.  相似文献   

3.
考察了富精氨酸多肽功能化的金纳米粒子作为载体对细胞外物质的跨膜传输行为. 通过生物素(Biotin)与亲和素(Streptavidin)的亲和反应将具有特定跨膜功能的富精氨酸RRRRRRRR(R8)多肽分子连接到多肽CALNN修饰的金纳米粒子表面, 实现粒子的功能化. 以荧光素为模型化合物, 利用激光共聚焦显微镜观察了纳米粒子的输送过程. 实验结果表明, 富精氨酸多肽功能化的金纳米粒子可以作为一种低毒高效的跨膜输送载体.  相似文献   

4.
由于 DNA分子具有特殊的结构和碱基配对特性 ,人们已经意识到利用 DNA分子将无机纳米粒子 (量子点 )组装成各种不同的有序纳米结构的可行性 [1~ 5] .如 Mirkin等 [6 ,7]利用端基修饰的寡聚 DNA将金纳米粒子组装成有序的六方堆积的层状结构 .Alivisatos等 [8]利用单链 DNA为模板 ,通过在 3′和5′端修饰巯基的互补 DNA将两个或三个金纳米粒子连接起来形成“人造分子”.本文中我们首次报道通过在侧链 ( 5′端 C1和 C2之间的磷酸根 )上修饰巯基的寡聚胞嘧啶 ( Oligo C10 - SH )和寡聚鸟嘌呤( Oligo G10 - SH)复性过程将 Cd S纳米…  相似文献   

5.
通过毛细管硅胶整体柱表面修饰十八烷基硫醇金纳米粒子,制备了一种新型毛细管电色谱固定相.制备金纳米粒子修饰整体柱时,采用溶胶-凝胶法制备毛细管硅胶整体柱,并在其表面化学修饰3-巯基丙基三甲氧基硅烷;通过巯基基团固载金纳米粒子于整体柱上,再共价键合十八烷基硫醇于金纳米粒子表面.以甲苯为探针,对理论塔板高度与流动相线速度之间...  相似文献   

6.
颜雪  张雪姣  袁亚仙  姚建林  顾仁敖 《化学学报》2010,68(13):1267-1271
介绍了一种基于表面增强拉曼光谱技术(SERS)的简单快速检测低浓度铬酸根离子的方法. 通过介质中水与铬酸根离子以及修饰在金基底和金纳米粒子表面的羧酸根形成氢键而构建“巯基苯甲酸-金基底/铬酸根-水/巯基苯甲酸-金纳米粒子”三明治结构. 通过检测标记分子的SERS信号判断溶液中是否存在铬酸根离子. 研究表明标记分子的SERS强度与铬酸根离子的浓度有关, 随浓度增加SERS强度呈非线性增强, 在10-9 mol/L出现转折点. 利用以上三明治结构, 通过引入功能化的Fe2O3@Au核壳磁性纳米粒子, 利用外加磁场可富集分离溶液中的铬酸根离子, 经SERS 检测表明10-5 mol/L的铬酸根离子磁分离后其浓度降低了约4~6个数量级.  相似文献   

7.
尺寸可控的金纳米粒子在功能化的MWNTs表面的自组装   总被引:1,自引:0,他引:1  
提出了一个有效的、以晶种媒介的光化学法可控生长不同尺寸的胶体金纳米粒子在多壁碳纳米管(MWNTs)表面的自组装.方法基于羧基化的MWNTs以双官能团巯基乙酸分子化学修饰而连接上巯基,随后,不同尺寸的胶体金纳米粒子以共价结合的方式分别被直接锚定在其表面,从而获得良好的Au/MWNTs杂化材料.通过UV-Vis光谱、TEM和XRS等技术对胶体金纳米粒子、Au/MWNTs复合物及其自组装过程的表征,详细研究了金纳米粒子尺寸对功能化MWNTs表面自组装的影响,结果表明,直径为2.5~5.2nm范围很好分散的金纳米粒子能够很好自组装在平均直径约20nm的功能化MWNTs表面上.同时探讨了双官能团分子的化学修饰和金纳米粒子对MWNTs表面自组装的驱动力。  相似文献   

8.
以4-巯基苯甲酸修饰纳米金粒子作为固酶载体和导电基体构建了新型纳米结构固酶葡萄糖/O2燃料电池,其制备简单,长期使用性能稳定。利用纳米金粒子通过表面修饰基团和酶分子活性中心附近疏水结合位之间的相互作用固定葡萄糖氧化酶(GOx)和漆酶(Lac)分子,分别制备了固酶阳极-4-巯基苯甲酸功能化纳米金粒子固定葡萄糖氧化酶修饰金盘电极GOx/4-MBA@GNP/Au和固酶阴极-4-巯基苯甲酸功能化纳米金粒子固定漆酶修饰金盘电极Lac/4-MBA@GNP/Au。电化学实验结果表明,两种电极在不引入任何外加电子中介的条件下,均可以实现酶活性中心-纳米金粒子之间的直接电子迁移,而且具有较快的催化反应能力(固酶阳极和阴极的转化速率分别为1.3和0.5 s-1;催化葡萄糖氧化和氧气还原的起始电位分别为-0.23和0.76 V)。评估了固酶阳极和阴极组装成的纳米结构固酶葡萄糖/O2燃料电池的能量输出性能。该燃料电池在没有Nafion薄膜和阳极无N2气保护下,开路电压和最大输出能量密度分别可达0.56 V和760.0 μW/cm2,使用一周后输出能量密度仍然可以达到最初值的~88%。进一步测试结果显示,该燃料电池呈现出与游离漆酶类似的pH依赖关系和热稳定性,这些实验结果均暗示:影响整个酶燃料电池性能的关键在于漆酶基阴极催化氧还原的过程。此外,这种燃料电池的性能虽然受到共存干扰物抗坏血酸的影响,但在人类血清中测试结果显示其仍然具有较高的输出能量密度(132.0 μW/cm2,开路电压0.40 V)。本文研究结果给出了设计高性能葡萄糖/O2燃料电池的新思路,同时也为研究固酶燃料电池的构效关系提供了实验依据和有价值的启示。  相似文献   

9.
为有效降低液晶器件的开启电压,获得具有低功耗特性的液晶显示器件。本文采用巯基功能化的笼形倍半硅氧烷(POSS)作为修饰配体,硼氢化钠为还原剂,采用一步法还原氯金酸制备出粒径约为5 nm的金纳米粒子。将该金纳米粒子以不同质量分数掺杂到向列相液晶4-正戊基4'-氰基联苯(5CB)中,研究了其对液晶黏度、阈值电压、相变温度的影响。结果表明,POSS修饰的金纳米粒子可以使液晶材料5CB的黏度降低、阈值电压减小。该金纳米粒子的掺入,拓宽了液晶材料的相变温度范围。  相似文献   

10.
配体在纳米晶的制备和表面功能化过程中起着至关重要的作用。本文对金纳米晶制备和表面修饰中常见的分子配体,如柠檬酸根、巯基化合物、表面活性剂、树枝状分子、生物分子等的研究进展进行了概述。重点介绍了不同分子配体在金纳米晶尺寸形貌控制及表面功能化等方面的特点和作用,并对相关研究领域未来的发展趋势进行了展望。  相似文献   

11.
We report a novel strategy for the synthesis of aqueous stable, carboxylated gold nanoparticles (GNPs) by using glutamic acid as the reducing agent. The ratio of chloroaurate ions, AuCl(-)(4) to glutamic acid was optimized in the reaction medium to obtain monodispersed GNPs. Glutamic acid reduced gold nanoparticles were characterized by UV-visible, FTIR, dynamic light scattering and transmission electron microscopy, which demonstrated high stability in aqueous solution over a period of time indicating stabilization via surface-bound amino acid. Functionalized nanoparticles were conjugated with protein molecules through electrostatic attraction between the surface-terminated negatively charged carboxylate groups (COO(-)) of glutamic acid and the positively charged amino groups (NH(+)(3)) of the protein. The conjugation efficiency of the GNP:protein conjugates was confirmed qualitatively and quantitatively through gel electrophoresis and critical flocculation concentration analysis. The interaction between functionalized GNPs with protein molecules was investigated using fluorescence spectroscopy showing the fluorescence quenching of the tryptophan residues of protein molecules after conjugation. Circular dichroism (CD) studies of the conjugates confirmed that the protein undergoes a more flexible conformational state on the boundary surface of GNPs after conjugation. There was substantial conformational transition from alpha-helix to beta-sheet structure after conjugation of protein to GNPs.  相似文献   

12.
The influence of charged side chains on the folding-unfolding equilibrium of beta-peptides was investigated by means of molecular dynamics simulations. Four different peptides containing only negatively charged side chains, positively charged side chains, both types of charged side chains (with the ability to form stabilizing salt bridges) or no charged side chains were studied under various conditions (different simulation temperatures, starting structures and solvent environment). The NMR solution structure in methanol of one of the peptides (A) has already been published; the synthesis and NMR analysis of another peptide (B) is described here. The other peptides (C and D) studied herein have hitherto not been synthesized. All four peptides A-D are expected to adopt a left-handed 3(14)-helix in solution as well as in the simulations. The resulting ensembles of structures were analyzed in terms of conformational space sampled by the peptides, folding behavior, structural properties such as hydrogen bonding, side chain-side chain and side chain-backbone interactions and in terms of the level of agreement with the NMR data available for two of the peptides. It was found that the presence of charged side chains significantly slows down the folding process in methanol solution due to the stabilization of intermediate conformers with side chain-backbone interactions. In water, where the solvent competes with the solute-solute polar interactions, the folding process to the 3(14)-helix is faster in the simulations.  相似文献   

13.
A new C-linked carbo-β-amino acid, (R)-β-Caa((r)), having a carbohydrate side chain with d-ribo configuration, was prepared from d-glucose by inverting the C-3 stereocenter to introduce constraints/interactions. From the NMR studies it was inferred that the new monomer may participate in additional electrostatic interactions, facilitating and enhancing novel folds in oligomeric peptides derived from it. The α/β-peptides, synthesized from alternating l-Ala and (R)-β-Caa((r)), have shown the presence of 14/15-helix by NMR (in CDCl(3), methanol-d(3) and CD(3)CN), CD and MD calculations. The hybrid peptides showed the presence of electrostatic interactions involving the intraresidue amide proton and the C3-OMe, which helped in the stabilization of the NH(i)···CO(i-4) H-bonds and adoption of 14/15-helix. The importance of such additional interactions has been well defined in recent times to stabilize the folding in a variety of peptidic foldamers. These observations suggest and emphasize that the side chain-backbone interactions are crucial in the stabilization of the desired folding propensity. The designed monomer thus enlarges the opportunities for the synthesis of peptides with novel conformations and expands the repertoire of the foldamers.  相似文献   

14.
Today, understanding the interaction between DNA molecule with nanoparticles and functionalized nanoparticles has a significant importance in medical applications and targeted drug delivery. Molecular dynamics simulation on double-stranded molecule with the structure of the double helix and sequence of (CCTCAGGCCTCC) was performed in three states. The aim was to evaluate the effect of gold nanoparticles (GNPs) with partial negative charge on the stability of a DNA molecule. During the simulation process, the GNPs become closed to the DNA molecule and phosphate groups of the DNA molecule guided the nanoparticles toward its major groove. At the end of the DNA molecule chain, the terminal nucleotide of the chain was laid flat on the surface of the GNPs due to excessive exposure to solvent molecules and occurrence of peeling and untwisting states. According to the results, proximity of the GNPs and functionalized GNPs to the DNA molecule led to increased configuration entropy. While conformational energy and van der Waals energy of the DNA molecule increased in the presence of the GNPs and functionalized GNPs, there was a reduction and an increase in the number of hydrogen bonds between complementary bases in the presence of the GNPs and functionalized GNPs, respectively. Radial distribution function was estimated for water molecules and sodium cations, compared to oxygen atoms of the phosphate group of the DNA molecule. Results were indicative of the release of water molecules from around the DNA molecule in the presence of the GNPs. In addition, the distance between sodium cations and the GNPs decreased. Nevertheless, no such phenomenon occurred in the presence of the functionalized GNPs. Therefore, according to results, it seems that GNPs decreased the stability of the DNA molecule and the functionalized GNPs with partial negative charge caused structural changes and created compression, but did not destroy the double-strand structure of the DNA molecule.  相似文献   

15.
Carboxylated peptide‐functionalized gold nanoparticles (peptide‐GNPs) self‐assemble into two‐ and three‐dimensional nanostructures in the presence of various heavy metal ions (i.e. Pb2+, Cd2+, Cu2+, and Zn2+) in aqueous solution. The assembly process is monitored by following the changes in the surface plasmon resonance (SPR) band of gold nanoparticles in a UV/Vis spectrophotometer, which shows the development of a new SPR band in the higher‐wavelength region. The extent of assembly is dependent on the amount of metal ions present in the medium and also the time of assembly. TEM analysis clearly shows formation of two‐ and three‐dimensional nanostructures. The assembly process is completely reversible by addition of alkaline ethylenediaminetetraacetic acid (EDTA) solution. The driving force for the assembly of peptide‐GNPs is mainly metal ion/carboxylate coordination. The color and spectral changes due to this assembly can be used for detection of these heavy‐metal ions in solution.  相似文献   

16.
We recently developed an orthogonal, high-throughput assay to identify peptides that self-assemble into potent, equilibrium pores in synthetic lipid bilayers. Here, we use this assay as a high-throughput screen to select highly potent pore-forming peptides from a 7776-member rational combinatorial peptide library based on the sequence of the natural pore-forming peptide toxin melittin. In the library we varied ten critical residues in the melittin sequence, chosen to test specific structural hypotheses about the mechanism of pore formation. Using the new high-throughput assay, we screened the library for gain-of-function sequences at a peptide to lipid ratio of 1:1000 where native melittin is not active. More than 99% of the library sequences were also inactive under these conditions. A small number of library members (0.1%) were highly active. From these we identified 14 potent, gain-of-function, pore-forming sequences. These sequences differed from melittin in only 2-6 amino acids out of 26. Some native residues were highly conserved and others were consistently changed. The two factors that were essential for gain-of-function were the preservation of melittin's proline-dependent break in the middle of the helix and the improvement and extension the amphipathic nature of the α-helix. In particular the highly cationic carboxyl-terminal sequence of melittin, is consistently changed in the gain-of-function variants to a sequence that it is capable of participating in an extended amphipathic α-helix. The most potent variants reside in a membrane-spanning orientation, in contrast to the parent melittin, which is predominantly surface bound. This structural information, taken together with the high-throughput tools developed for this work, enable the identification, refinement and optimization of pore-forming peptides for many potential applications.  相似文献   

17.
The Monte Carlo method is employed to study the conditions for nanoconductor formation on a DNA molecule in aqueous solution via electrostatic interactions between negatively charged groups of the matrix molecule and positively charged functionalized gold nanoparticles. A model is developed that explicitly takes into account low-molecular-mass counterions resulting from the dissociation of DNA molecule and surface functional groups of nanoparticles. It is shown that the explicit regard to the counterions is of great importance for investigating conditions of nanoaggregate formation. The model parameters are estimated at which continuous metal coatings are formed via self-assembly.  相似文献   

18.
The correct balance between attractive, repulsive and peptide hydrogen bonding interactions must be attained for proteins to fold correctly. To investigate these important contributors, we sought a comparison of the folding between two 25-residues peptides, the influenza A M2 protein transmembrane domain (M2TM) and the 25-Ala (Ala25). M2TM forms a stable α-helix as is shown by circular dichroism (CD) experiments. Molecular dynamics (MD) simulations with adaptive tempering show that M2TM monomer is more dynamic in nature and quickly interconverts between an ensemble of various α-helical structures, and less frequently turns and coils, compared to one α-helix for Ala25. DFT calculations suggest that folding from the extended structure to the α-helical structure is favored for M2TM compared with Ala25. This is due to CH⋯O attractive interactions which favor folding to the M2TM α-helix, and cannot be described accurately with a force field. Using natural bond orbital (NBO) analysis and quantum theory atoms in molecules (QTAIM) calculations, 26 CH⋯O interactions and 22 NH⋯O hydrogen bonds are calculated for M2TM. The calculations show that CH⋯O hydrogen bonds, although individually weaker, have a cumulative effect that cannot be ignored and may contribute as much as half of the total hydrogen bonding energy, when compared to NH⋯O, to the stabilization of the α-helix in M2TM. Further, a strengthening of NH⋯O hydrogen bonding interactions is calculated for M2TM compared to Ala25. Additionally, these weak CH⋯O interactions can dissociate and associate easily leading to the ensemble of folded structures for M2TM observed in folding MD simulations.  相似文献   

19.
A novel method for fabricating nanostructured gold colloid electrode based on in situ functionalization of self-assembled monolayers (SAMs) of 4-aminothiophenol (4-ATP) on gold electrode is proposed. The in situ functionalization of 4-ATP SAMs yields a redox active monolayer of 4′-mercapto-N-phenylquinone diimine (NPQD). When the amino-rich surface is exposed to gold colloid, the citrate-stabilized gold nanoparticles (GNPs) can be anchored onto the surface of the in situ functionalized electrode by the electrostatic interactions and a new nanostructured gold colloid surface was obtained. The mixed monolayers of in situ functionalized product, NPQD, and 1,4-benzenedimethanethiol (BDMT) can provide a more compact and order platform to fabricate GNPs on the electrode surface. The film formed by this technique has the advantages of high organization and uniformity, which could provide a desirable microenvironment to assemble GNPs and facilitate the concentration of the analyte from the bulk solution to the electrode surface. The nanostructured gold colloid electrode has favorable effect on the electrochemical oxidation of naphthol isomers.  相似文献   

20.
不同介质中蜂毒素聚集/解聚集的超分子调控及相关机理   总被引:1,自引:1,他引:0  
利用荧光光谱和圆二色谱等技术手段研究了蜂毒素在2-羟丙基环糊精、氯化钠或 DOPC 调控下的聚集/解聚集过程、相关机理以及不同介质中α-helix的含量. 研究结果表明, 蜂毒素在不同介质中的聚集能力、构象以及和介质分子相互作用力均存在很大差别.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号