首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The unavoidable spatial inhomogeneity of the static magnetic field generated by open sensors has precluded their use for high-resolution NMR spectroscopy. In fact, this application was deemed impossible because these field variations are usually orders of magnitude larger than those created by the microscopic structure of the molecules to be detected. Recently, chemical shift resolved NMR spectra were observed for the first time outside a portable single-sided magnet by implementing a method that exploits inhomogeneities in the rf field designed to reproduce variations of the static magnetic field. In this communication, we describe in detail the magnet system built from permanent magnets as well as the rf coil geometry used to compensate the static field variations.  相似文献   

2.
Solid-state NMR experiments benefit from being performed at high fields, and this is essential in order to obtain spectra with the resolution and sensitivity required for applications to protein structure determination in aligned samples. Since the amount of rf power that can be applied is limited, especially for aqueous protein samples, the most important pulse sequences suffer from bandwidth limitations resulting from the same spread in chemical shift frequencies that aids resolution. SAMPI4 is a pulse sequence that addresses these limitations. It yields separated local field spectra with narrower and more uniform linewidths over the entire spectrum than the currently used PISEMA and SAMMY experiments. In addition, it is much easier to set up on commercial spectrometers and can be incorporated as a building block into other multidimensional pulse sequences. This is illustrated with a two-dimensional HETCOR experiment, where it is crucial to transfer polarization from the amide protons to their directly bonded nitrogens over a wide range of chemical shift frequencies. A quantum-mechanical treatment of the spin Hamiltonians under high-power rf pulses is presented which gives the scaling factor for SAMPI4 as well as the durations of the rf pulses to achieve optimal decoupling.  相似文献   

3.
纯位移核磁共振氢谱及其应用   总被引:1,自引:0,他引:1  
J耦合引起的核磁共振(NMR)信号多重裂分的数目和耦合常数反映了磁性原子核之间的化学键数目和空间位置信息,是研究分子结构的重要依据之一.但是当分子中磁性原子核数目增加时,NMR谱图特别是一维核磁共振氢谱(1D ~1H NMR)中,J耦合所致的多重裂分造成谱图重叠,严重干扰结构指认和定量分析.利用纯位移(亦称宽带同核去耦)~1H NMR谱图可以消除J耦合效应(即将相邻质子间耦合所引起的多重裂分融合成一个单峰),得到与去耦碳谱相似的、只含化学位移信息的谱图.该文首先介绍了三种最受关注的获取纯位移核磁共振氢谱技术——BIRD、ZS和PSYCHE的基本原理,随后综述了纯位移~1H NMR谱图的典型应用.  相似文献   

4.
李鲠颖  邬学文 《物理学报》1991,40(10):1717-1722
本文提出一个Z回波核磁共振(NMR)脉冲序列,可以获得三能级体系的纯偶极或纯四极谱。Z回波NMR谱不仅与化学位移各向异性无关,而且在强射频场条件下,与射频场非均匀性无关。该方法明显优于章动NMR技术。以上结论经过理论分析和实验结果的验证。 关键词:  相似文献   

5.
Low-power broadband decoupling sequences WALTZ-16 and GARP-1 generate large far-from-resonance frequency modulations which preclude selectivity. The framework developed to construct these broadband sequences is modified to permit selective spin decoupling. Selective-decoupling sequences are created from shaped 90° pulses combined consecutively using WALTZ permutations and supercycle symmetry while shaped 180° pulses are combined in supercycle symmetry to make inversion-based decoupling sequences. Simulations and experiments compare the decoupling bandwidth, frequency selectivity, and quality of near-resonance decoupling for broadband and selective-decoupling sequences.  相似文献   

6.
The chemical shift anisotropy of a nuclear spin system in a strong magnetic field can be comparable to the strength of the rf pulse (weak pulse condition). In this case, the commonly used assumption that the chemical shift interaction Hamiltonian in the duration of a rf pulse can be neglected is no longer effective. The rf response characteristics of a spin-1/2 system under a weak pulse condition is studied in detail. The relationships between the distortion of the chemical shift powder spectrum and the relative rf field amplitude under various conditions are given. The suppression of sidebands of a MAS spectrum is analysed as an example of solid multiple pulse experiments. The experimental results are in good agreement with computer simulations.  相似文献   

7.
This paper describes a method for measuring the rate of convective flow in a liquid sample used for high-resolution NMR. The measurement is straightforward and achieves a clean separation of convection from other effects such as diffusion and relaxation. Convection results from temperature gradients within the sample, and it is shown how these can be measured with the aid of a simple chemical shift imaging experiment of a sample whose spectrum shows a strong and well characterized temperature dependence. The use of these two methods is illustrated by showing how the rate of convection and the temperature profile depend on the solvent, temperature, and gas flow rate of the temperature regulating system. It is also shown that broadband (13)C decoupling results in significant temperature gradients and associated convection.  相似文献   

8.
Use of adiabatic pulses in broadband inversion and decoupling is well known. Replacement of the rectangular pi pulses in the INEPT and rev-INEPT parts of the HSQC and gHSQC experiments with adiabatic pulses substantially improves the sensitivity of these experiments. However, modulation of cross peak intensity in multiplicity-edited HSQC or gHSQC experiments can be quite severe. These modulations arise during the multiplicity-editing periods due to the inefficient refocusing of the spin-echo caused by the mismatch of the echo delay with the one-bond coupling constant. These modulations (which we call echo modulations) are field strength (and hence spectral width) independent. Use of adiabatic pulses with the inversion sweep synchronized to the 1H-13C coupling constant range typically observed in a 13C spectrum will provide substantial improvement in sensitivity. The inversion profile problems associated with rectangular pi pulses can be moderately compensated by composite pulse schemes and these schemes could prove to be reasonable alternatives to adiabatic pulses. However, the adiabatic sweep provides a unique method to compensate the echo modulations for multiplicity-edited experiments. The origin and the compensation of refocusing inefficiency with synchronized inversion sweep (CRISIS) method to minimize these modulations is described.  相似文献   

9.
The measurement of hetero-nuclear dipolar coupling using two-dimensional separated local field (SLF-2D) NMR experiments is a powerful technique for the determination of the structure and dynamics of molecules in the solid state and in liquid crystals. However, the experiment is sensitive to a number of factors such as the Hartmann–Hahn match condition, proton frequency off-set and rf heating. It is shown here that by the use of phase alternated pulses during spin-exchange the effect of rf mismatch on the dipolar coupling measurement can be compensated over a wide range of off-sets. Phase alternation together with time and amplitude modulation has also been considered and incorporated into a pulse scheme that combines spin exchange with homonuclear spin decoupling based on magic sandwich sequence and named as SAMPI4. Such time and amplitude averaged nutation experiments use relatively low rf power and generate less sample heating. One of these schemes has been applied on liquid crystal samples and is observed to perform well and yield spectra with high resolution.  相似文献   

10.
Magnetic field mapping in NMR imaging   总被引:1,自引:0,他引:1  
The Hahn spin preparation sequence provides a practical means for rapid and sensitive mapping of magnetic field inhomogeneity in NMR imaging applications. Choice of the rf pulse delay times tau 1 and tau 2 as well as conditions and limitations on the proposed use of this sequence for chemical shift imaging are discussed.  相似文献   

11.
The performance of two recently developed heteronuclear decoupling schemes designed to quench rotary resonance, phase-inverted supercycled sequence for attenuation of rotary resonance (PISSARRO) and high-phase two-pulse phase modulation (high-phase TPPM), are probed at high spinning frequencies. High-phase TPPM may be useful at the n=1 rotary resonance condition while PISSARRO permits efficient decoupling over a broad commonly used range of rf amplitudes, even at very high spinning frequencies. New insights into the response of spin systems to both decoupling schemes have been gained. High-phase TPPM is sensitive to the offsets of remote protons, their chemical shift anisotropies, and the relative orientations of the heteronuclear dipolar and proton chemical shift tensors. Since PISSARRO is virtually immune against such effects, the method is especially suited for very high magnetic fields.  相似文献   

12.
A new operator called RESET “Reducing nuclEar Spin multiplicitiEs to singuleTs” is presented to acquire broadband proton decoupled proton spectra in one and two dimensions. Basically, the homonuclear decoupling is achieved through the application of bilinear rotation pulses and delays. A [BIRD]r,x pulse building block is used to selectively invert all proton magnetization remotely attached to 13C isotopes, which is equivalent to a scalar J decoupling of the protons directly attached to 13C from all other protons in the spin system. In conjunction with an appropriate data processing technique pure shift proton spectra are obtained. For this purpose, the concept of constant time acquisition in the observe dimension is exploited. Both ideas were merged together producing superior HSQC based pseudo 3D pulse sequences. The resulting HSQC spectra show cross peaks with collapsed multiplet structures and singlet responses for the proton chemical shift frequencies. An unambiguous assignment of signals from overcrowded spectra becomes much easier. Finally, the recently introduced SHARC technique is exploited to enhance the capability of the scalar J decoupling method. A significant reduction of the total measurement time is achieved. The time is saved by reducing the number of 13C chemical shift evolution increments and working with superimposed narrow spectral bandwidths in the 13C indirect domain.  相似文献   

13.
A new PGSE NMR experiment, designed to measure molecular diffusion coefficients in systems with nonvanishing static dipolar coupling, is described. The fast static dipolar dephasing of the single-quantum (13)C coherences is removed by multiple-pulse heteronuclear decoupling. The resulting slow dephasing of the (13)C coherences allows for inserting appropriate gradient pulses into the pulse sequence. The presence of the large magnetic field gradient reduces the efficiency of the decoupling sequences which is compensated for by introducing a scheme of sequential slice selection across the sample. The method is demonstrated by (19)F-decoupled (13)C PGSE NMR experiments in a lyotropic nematic and lamellar liquid crystal.  相似文献   

14.
New features are obtained for previously predicted relaxation-stimulated resonances in Mössbauer spectra of nanomagnets exposed to an external rf field: the resonances should undergo low-frequency shift upon applying a weak static magnetic field. Analytic expressions for the resonance frequencies as functions of the static field are obtained within a simplified relaxation model. This effect extends the possibilities for experimental observation of the predicted effects, because tuning to the resonance may be accomplished not only by changing frequency of the rf field but also by varying the amplitude of the alternating field and the strength of the static field.  相似文献   

15.
For compounds giving “crowded” 1-dimensional magic-angle-spinning spectra, information about the local atomic environment in the form of the chemical shift anisotropy (CSA) is sacrificed for high resolution of the less informative isotropic chemical shift. Magic-angle-turning (MAT) NMR pulse sequences preserve the CSA information by correlating it to the isotropic chemical shift in a 2-dimensional experiment. For low natural abundance nuclei such as 13C and 15N and under 1H heteronuclear dipolar decoupling conditions, the dominant NMR interaction is the chemical shift. For abundant nuclei such as 1H, 19F, and 31P, the homonuclear dipolar interaction becomes a significant contribution to the observed linewidth in both F1 and F2 dimensions. We incorporate MREV8 homonuclear multiple-pulse decoupling sequences into the MAT experiment to give a multiple-pulse MAT (MP-MAT) experiment in which the homonuclear dipolar interaction is suppressed while maintaining the chemical shift information. Extensive use of computer simulation using GAMMA has guided the pulse sequence development. In particular, we show how the MREV8 pulses can be incorporated into a quadrature-detected sequence such as MAT. The MP-MAT technique is demonstrated for a model two-site system containing a mixture of silver trifluoroacetate and calcium difluoride. The resolution in the isotropic evolution dimension is improved by faster sample spinning, shorter MREV8 cycle times in the evolution dimension, and modifications of the MAT component of the pulse sequence.  相似文献   

16.
NMR methods (S. V. Dvinskikh et al., J. Magn. Reson. 142, 102-110 (2000) and S. V. Dvinskikh and I. Furó, J. Magn. Reson. 144, 142-149 (2000)) that combine PGSE with dipolar decoupling are extended to polycrystalline solids and unoriented liquid crystals. Decoupling suppresses dipolar dephasing not only during the gradient pulses but also under signal acquisition so that the detected spectral shape is dominated by the chemical shift tensor of the selected nucleus. The decay of the spectral intensity at different positions in the powder spectrum provides the diffusion coefficient in sample regions with their crystal axes oriented differently with respect to the direction of the field gradient. Hence, one can obtain the principal values of the diffusion tensor. The method is demonstrated by (19)F PGSE NMR with homonuclear decoupling in a lyotropic lamellar liquid crystal.  相似文献   

17.
A new heteronuclear decoupling mechanism under fast magic-angle spinning MAS is introduced. It is based on refocusing the coherences responsible for the dephase of low-gamma nuclei ((13)C, (15)N) transverse spin-polarization in the presence of strongly dipolar-coupled protons, and has the advantage that can be implemented by pulsed techniques, with all the benefits resulting from a reduced duty cycle compared with conventional decoupling by continuous rf irradiation. The decoupling efficiency of a simple rotor-synchronized Hahn-echo pulse train is analyzed both theoretically and experimentally. It was found that a substantial improvement in sensitivity and resolution can be achieved in compounds with small (1)H chemical shielding parameters even at moderate sample spinning, and some interesting applications are shown. It is also shown that much faster spinning frequencies, or alternative refocusing sequences, are needed for applications on rigid organic solids, i.e., in systems with larger (1)H chemical shifts.  相似文献   

18.
(13)C NMR is a powerful analytical tool for characterizing polyethylene copolymer composition and sequence distribution. Accurate characterization of the composition and sequence distribution is critical for researchers in industry and academia. Some common composite pulse decoupling (CPD) sequences used in polyethylene copolymer (13)C NMR can lead to artifacts such as modulations of the decoupled (13)C NMR signals (decoupling sidebands) resulting in systematic errors in quantitative analysis. A new CPD method was developed, which suppresses decoupling sidebands below the limit of detection (less than 1:40,000 compared to the intensity of the decoupled signal). This new CPD sequence consists of an improved Waltz-16 CPD, implemented as a bilevel method. Compared with other conventional CPD programs this new decoupling method produced the cleanest (13)C NMR spectra for polyethylene copolymer composition and triad sequence distribution analyses.  相似文献   

19.
In line with the recent development of the rapid single scan technique to calibrate proton flip angle, a new method that allows calibration of X-nucleus pulse width in a single scan is presented. The method involves observation of the anti-phase coherence of a proton coupled to a hetero-nuclear X-spin with nutation pulses applied at the X-spin resonance frequency in a gated decoupling experiment. The X-spin nutation causes the well-known illusions of decoupling, enabling estimation of rf amplitude level and the method is, thus, dubbed as IDEAL.  相似文献   

20.
This paper centers on a theoretical study of amplitude-modulated heteronuclear decoupling in solid-state NMR under magic-angle spinning (MAS). A spin system with a single isolated rare spin coupled to a large number of abundant spins is used in the analysis. The phase-alternating decoupling scheme (XiX decoupling) is analyzed using bimodal Floquet theory and the operator-based perturbation method developed by van Vleck. An effective Hamiltonian correct to second order is calculated for the spin system under XiX decoupling. The results of these calculations indicate that under XiX decoupling the main contribution to the residual line width comes from a cross-term between the heteronuclear and the homonuclear dipolar couplings. This is in contrast to continuous-wave decoupling, where the residual line width is dominated by the cross-term between the heteronuclear dipolar coupling and the chemical-shielding tensor of the irradiated spin. For high-power decoupling the method results in very good decoupling provided that certain unfavorable recoupling conditions, imposed by specific ratios of the amplitude modulation frequency and the MAS frequency, are avoided. For low-power decoupling, the method leads to acceptable decoupling when the pulse length corresponds to an integer multiple of a 2pi rotation and the rf-field amplitude is less than a quarter of the MAS frequency. The performance of the XiX scheme is analyzed over a range of values of the rf power, and numerical results that agree well with the most recent experimental observations are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号