首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
This paper presents an exploratory study of the binding interactions of xenon with the surface of several different proteins in the solution and solid states using both conventional and hyperpolarized (129)Xe NMR. The generation of hyperpolarized (129)Xe by spin exchange optical pumping affords an enhancement by 3-4 orders of magnitude of its NMR signal. As a result, it is possible to observe Xe directly bound to the surface of micromolar quantities of lyophilized protein. The highly sensitive nature of the (129)Xe line shape and chemical shift are used as indicators for the conditions most likely to yield maximal dipolar contact between (129)Xe nuclei and nuclear spins situated on the protein. This is an intermediate step toward achieving the ultimate goal of NMR enhancement of the binding-site nuclei by polarization transfer from hyperpolarized (129)Xe. The hyperpolarized (129)Xe spectra resulting from exposure of four different proteins in the lyophilized, powdered form have been examined for evidence of binding. Each of the proteins, namely, metmyoglobin, methemoglobin, hen egg white lysozyme, and soybean lipoxygenase, yielded a distinctly different NMR line shape. With the exception of lysozyme, the proteins all possess a paramagnetic iron center which can be expected to rapidly relax the (129)Xe and produce a net shift in its resonance position if the noble gas atom occupies specific binding sites near the iron. At temperatures from 223 to 183 K, NMR signals were observed in the 0-40 ppm chemical shift range, relative to Xe in the gas phase. The signals broadened and shifted downfield as the temperature was reduced, indicating that Xe is exchanging between the gas phase and internal or external binding sites of the proteins. Additionally, conventional (129)Xe NMR studies of metmyoglobin and lipoxygenase in the solution state are presented. The temperature dependence of the chemical shift and line shape indicate exchange of Xe between adsorption sites on lipoxygenase and Xe in the solvent on the slow to intermediate exchange time scale. The NMR results are compared with N(2), Xe, and CH(4) gas adsorption isotherms. It is found that lipoxygenase is unique among the proteins studied in possessing a relatively high affinity for gas molecules, and in addition, demonstrating the most clearly resolved adsorbed (129)Xe NMR peak in the lyophilized state.  相似文献   

2.
 激光抽运和自旋交换的超极化 129Xe 核磁共振是近几年发展起来的一种新方法,它比普通 129Xe 核磁共振的检测灵敏度提高约104 ~105倍,是研究材料孔结构和孔内粒子分布的强有力工具. 本文介绍了超极化 129Xe 核磁共振技术并综述了其在多孔催化材料研究中的应用,特别是对催化反应中广泛使用的无机微孔和介孔材料中的应用进行了详细的讨论. 最后展望了此技术的应用前景.  相似文献   

3.
High temperature dielectric measurement on rhombohedral Ba2BiTaO6 shows an anomaly at 250 °C where there is a structural transition from the room temperature rhombohedral (R-3) to high temperature cubic (Fm-3m) phase as inferred from the high temperature X-ray diffraction data. Impedance spectroscopic study reveals that the contribution to the electrical response comes from grain as well as from grain boundary. Grain boundary capacitance does not show significant temperature dependence whereas grain capacitance increases with increasing temperature. Both of these conduction processes are similar in nature as indicated from the close value of activation energies as derived from the Arrhenius plot.  相似文献   

4.
Among rare gases, xenon features an unusually broad nuclear magnetic resonance (NMR) chemical shift range in its compounds and as a non-bonded Xe atom introduced into different environments. In this work we show that (129)Xe NMR chemical shifts in the recently prepared, matrix-isolated xenon compounds appear in new, so far unexplored (129)Xe chemical shift ranges. State-of-the-art theoretical predictions of NMR chemical shifts in compounds of general formula HXeY (Y = H, F, Cl, Br, I, -CN, -NC, -CCH, -CCCCH, -CCCN, -CCXeH, -OXeH, -OH, -SH) as well as in the recently prepared ClXeCN and ClXeNC species are reported. The bonding situation of Xe in the studied compounds is rather different from the previously characterized cases as Xe appears in the electronic state corresponding to a situation with a low formal oxidation state, between I and II in these compounds. Accordingly, the predicted (129)Xe chemical shifts occur in new NMR ranges for this nucleus: ca. 500-1000 ppm (wrt Xe gas) for HXeY species and ca. 1100-1600 ppm for ClXeCN and ClXeNC. These new ranges fall between those corresponding to the weakly-bonded Xe(0) atom in guest-host systems (δ < 300 ppm) and in the hitherto characterized Xe molecules (δ > 2000 ppm). The importance of relativistic effects is discussed. Relativistic effects only slightly modulate the (129)Xe chemical shift that is obtained already at the nonrelativistic CCSD(T) level. In contrast, spin-orbit-induced shielding effects on the (1)H chemical shifts of the H1 atom directly bonded to the Xe center largely overwhelm the nonrelativistic deshielding effects. This leads to an overall negative (1)H chemical shift in the range between -5 and -25 ppm (wrt CH(4)). Thus, the relativistic effects induced by the heavy Xe atom appear considerably more important for the chemical shift of the neighbouring, light hydrogen atom than that of the Xe nucleus itself. The predicted NMR parameters facilitate an unambiguous experimental identification of these novel compounds.  相似文献   

5.
Molecular confinement plays a significant effect on trapped gas and solvent molecules. A fundamental understanding of gas adsorption within the porous confinement provides information necessary to design a material with improved selectivity. In this regard, metal–organic framework (MOF) adsorbents are ideal candidate materials to study confinement effects for weakly interacting gas molecules, such as noble gases. Among the noble gases, xenon (Xe) has practical applications in the medical, automotive and aerospace industries. In this Communication, we report an ultra-microporous nickel-isonicotinate MOF with exceptional Xe uptake and selectivity compared to all benchmark MOF and porous organic cage materials. The selectivity arises because of the near perfect fit of the atomic Xe inside the porous confinement. Notably, at low partial pressure, the Ni–MOF interacts very strongly with Xe compared to the closely related Krypton gas (Kr) and more polarizable CO2. Further 129Xe NMR suggests a broad isotropic chemical shift due to the reduced motion as a result of confinement.  相似文献   

6.
The isotropic 129Xe nuclear magnetic resonance (NMR) chemical shift (CS) in Xe@C60 dissolved in liquid benzene was calculated by piecewise approximation to faithfully simulate the experimental conditions and to evaluate the role of different physical factors influencing the 129Xe NMR CS. The 129Xe shielding constant was obtained by averaging the 129Xe nuclear magnetic shieldings calculated for snapshots obtained from the molecular dynamics trajectory of the Xe@C60 system embedded in a periodic box of benzene molecules. Relativistic corrections were added at the Breit–Pauli perturbation theory (BPPT) level, included the solvent, and were dynamically averaged. It is demonstrated that the contribution of internal dynamics of the Xe@C60 system represents about 8% of the total nonrelativistic NMR CS, whereas the effects of dynamical solvent add another 8%. The dynamically averaged relativistic effects contribute by 9% to the total calculated 129Xe NMR CS. The final theoretical value of 172.7 ppm corresponds well to the experimental 129Xe CS of 179.2 ppm and lies within the estimated errors of the model. The presented computational protocol serves as a prototype for calculations of 129Xe NMR parameters in different Xe atom guest–host systems. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
Rotational spectra of three isotopomers of the Xe-(H2O)2 van der Waals trimer were recorded using a pulsed-nozzle, Fourier transform microwave spectrometer. Nine [nine, four] a-type and twelve [eleven, seven] b-type transitions were measured for the 132Xe-(H2O)2 [129Xe-(H2O)2, 131Xe-(H2O)2] isotopomer. The determined rotational and centrifugal distortion constants were used to extract information about the structure and vibrational motions of the complex. The nuclear quadrupole hyperfine structures due to the 131Xe (nuclear spin quantum number I=3/2) nucleus were also detected. The large value of the off-diagonal nuclear quadrupole coupling constant chiab in particular provides detailed insight into the electronic environment of the xenon atom and the orientations of the water molecules within the complex. An effective structure that best reproduces the experimental 131Xe nuclear quadrupole coupling constants is rationalized by ab initio calculations. An overall goal of this line of work is to determine how the successive solvation of a xenon atom with water molecules affects the xenon electron distribution and its intermolecular interactions. The results may provide molecular level interpretations of 129Xe NMR data from, for example, imaging experiments.  相似文献   

8.
Hyperpolarized (HP) 129Xe NMR was used for the first time to probe the geometry and interconnectivity of pores in RF aerogels and to correlate them with the [resorcinol]/[catalyst] (R/C) ratio. We have demonstrated that HP 129Xe NMR is an ideal method for accurately measuring the volume-to-surface-area (Vg/S) ratios for soft mesoporous materials without using any geometric models. The Vg/S parameter, which is related both to the geometry and the interconnectivity of the porous space, has been found to correlate strongly with the R/C ratio and exhibits an unusually large span: an increase in the R/C ratio from 50 to 500 results in about 5-fold rise in Vg/S. Unlike conventional techniques, HP 129Xe NMR spectroscopy probes the geometry and interconnectivity of the nano- or mesopores in soft materials, providing new insights into the pore structure.  相似文献   

9.
A wealth of information about porous materials and their void spaces has been obtained from the chemical shift data in (129)Xe NMR spectroscopy during the past decades. In this contribution, the only NMR active, stable krypton isotope (83)Kr (spin I = (9)/(2)) is explored as a novel probe for porous materials. It is demonstrated that (83)Kr NMR spectroscopy of nanoporous or microporous materials is feasible and straightforward despite the low gyromagnetic ratio and low abundance of the (83)Kr isotope. The (83)Kr line width in most of the studied cases is quadrupolar dominated and field-strength independent. A significant exception was found in calcium-exchanged zeolites where the field dependence of the line width indicates a distribution of isotropic chemical shifts that may be caused by long-range disorder in the zeolite structure. The (83)Kr chemical shifts observed in the investigated materials display a somewhat different behavior than that of their (129)Xe counterparts and should provide a great resource for the verification or refinement of current (129)Xe chemical shift theory. In contrast to xenon, krypton with its smaller atomic radius has been demonstrated to easily penetrate the porous framework of NaA. Chemical shifts and line widths of (83)Kr are moderately dependent on small fluctuations in the krypton loading but differ strongly between some of the studied samples.  相似文献   

10.
In this contribution, we demonstrate that a material (organic zeolite mimetic coordination polymer [CuL(2)], where L = L(-) = CF(3)COCHCOC(OCH(3))(CH(3))(2)) can be endowed with its functionality in situ under molecular-level control. This process involves the isomerization of the ligands followed by phase interconversion from a dense to an open, porous form. The porous (beta) form of the complex reveals zeolite-like behavior but, unlike zeolites and many other hard porous frameworks, porosity may be created or destroyed at will by the application of suitable external stimuli. Contact with methylene chloride vapor was used to switch on the sorbent functionality, whereas switching off was accomplished with a temperature pulse. The transformations between functionally inactive alpha and active beta forms, as well as the amount of vacant pore space, were monitored in situ by observing the NMR spectrum of hyperpolarized (HP) Xe atom probes. For methylene chloride, the chemical shift of the coabsorbed HP Xe correlated directly with the amount of adsorbate in the pore system of the open framework, illustrating the use of HP Xe for following sorption kinetics. The adsorption of propane, as an inert adsorbate, was also monitored directly with (1)H NMR, with HP Xe and by BET measurements, revealing more complex behavior.  相似文献   

11.
12.
An extensive study has been made on a series of multifunctional mesoporous silica materials, prepared by introducing two different organoalkoxysilanes, namely 3-[2-(2-aminoethylamino)ethylamino]propyltrimethoxysilane (AEPTMS) and 3-cyanopropyltriethoxysilane (CPTES) during the base-catalyzed condensation of tetraethoxysilane (TEOS), using the variable-temperature (VT) hyperpolarized (HP) 129Xe NMR technique. VT HP-129Xe NMR chemical shift measurements of adsorbed xenon revealed that surface properties as well as functionality of these AEP/CP-functionalized microparticles (MP) could be controlled by varying the AEPTMS/CPTES ratio in the starting solution during synthesis. Additional chemical shift contribution due to Xe-moiety interactions was observed for monofunctional AEP-MP and CP-MP as well as for bifunctional AEP/CP-MP samples. In particular, unlike CP-MP that has a shorter organic backbone on the silica surface, the amino groups in the AEP chain tends to interact with the silanol groups on the silica surface causing backbone bending and hence formation of secondary pores in AEP-MP, as indicated by additional shoulder peak at lower field in the room-temperature 129Xe NMR spectrum. The exchange processes of xenon in different adsorption regions were also verified by 2D EXSY HP-129Xe NMR spectroscopy. It is also found that subsequent removal of functional moieties by calcination treatment tends to result in a more severe surface roughness on the pore walls in bifunctional samples compared to monofunctional ones. The effect of hydrophobicity/hydrophilicity of the organoalkoxysilanes on the formation, pore structure and surface property of these functionalized mesoporous silica materials are also discussed.  相似文献   

13.
Hierarchical porous architecture with interconnected trimodal micro-meso-macroporous systems constructed from uniform zeolite Zr-doped silicalite-1 nanocrystals has been prepared. The synthesis has been made by using glycerin as a reaction medium via a quasi-solid-state crystallization of hierarchically meso-macroporous zirconosilicate precursor under the effect of the structure directing agent TPAOH. The presence of glycerin is crucial in the synthesis systems to maintain the porous hierarchy. The pores inter-connectivity, Zr location in the framework, the acidity and the catalytic activity have been studied by laser-hyperpolarized (129)Xe NMR spectroscopy, UV-visible spectroscopy, temperature-programmed desorption of ammonia and the catalytic isopropylbenzene cracking probe reaction, respectively. The products possess well-defined macrochannels interconnected with mesopores located in the macropore walls, which in turn have been constructed from microporous MFI-type zeolite units. (129)Xe NMR study indicated that the hierarchically micro-, meso-, macro-pore systems are homogeneously distributed throughout the final materials and well interconnected, which is important for molecular diffusion. The TPD-NH(3) investigation revealed that the hierarchically micro-meso-macroporous materials constructed from zeolite Zr-Silicalite-1 nanocrystals present strong acidity.  相似文献   

14.
The title complex [ nBuSn(O)(tsglyO)]6·6CHCl3 (tsglyO=N-p-tolysulfonyl-glycinate monoanion) was synthesized by the reaction of nBuSn(O)OH with N-p-tolysulfonyl-glycine in 1∶1 molar ratio. The complex was characterized by IR, 1H NMR spectra and elemental analysis. The crystal structure was determined by X-ray diffraction method. It crystallizes in rhombohedral system with space group R3. The crystal data are: a=b=2.738 7(4) nm, c=1.446 5(4) nm, α=β=90°, γ=120°, Z=6, Dc=1.726 g·cm-3, F(000)=4 878, V=9.396(3) nm3, R1=0.032 5, wR2=0.089 8. The structure shows a distorted octahedral configuration with six-coordination for the central tin atom. CCDC: 274183.  相似文献   

15.
We employ state-of-the-art methods and basis sets to study the effect of inserting the Xe atom into the water molecule and the water dimer on their NMR parameters. Our aim is to obtain predictions for the future experimental investigation of novel xenon complexes by NMR spectroscopy. Properties such as molecular structure and energetics have been studied by supermolecular approaches using HF, MP2, CCSD, CCSD(T) and MP4 methods. The bonding in HXeOH···H(2)O complexes has been analyzed by Symmetry-Adapted Perturbation Theory to provide the intricate insight into the nature of the interaction. We focus on vibrational spectra, NMR shielding and spin-spin coupling constants-experimental signals that reflect the electronic structures of the compounds. The parameters have been calculated at electron-correlated and Dirac-Hartree-Fock relativistic levels. This study has elucidated that the insertion of the Xe atom greatly modifies the NMR properties, including both the electron correlation and relativistic effects, the (129)Xe shielding constants decrease in HXeOH and HXeOH···H(2)O in comparison to Xe atom; the (17)O, as a neighbour of Xe, is deshielded too. The HXeOH···H(2)O complex in its most stable form is stabilized mainly by induction and dispersion energies.  相似文献   

16.
The 129Xe NMR line shapes of xenon adsorbed in the nanochannels of the (+/-)-[Co(en)3]Cl3 ionic crystal have been calculated by grand canonical Monte Carlo (GCMC) simulations. The results of our GCMC simulations illustrate their utility in predicting 129Xe NMR chemical shifts in systems containing a transition metal. In particular, the nanochannels of (+/-)-[Co(en)3]Cl3 provide a simple, yet interesting, model system that serves as a building block toward understanding xenon chemical shifts in more complex porous materials containing transition metals. Using only the Xe-C and Xe-H potentials and shielding response functions derived from the Xe@CH4 van der Waals complex to model the interior of the channel, the GCMC simulations correctly predict the 129Xe NMR line shapes observed experimentally (Ueda, T.; Eguchi, T.; Nakamura, N.; Wasylishen, R. E. J. Phys. Chem. B 2003, 107, 180-185). At low xenon loading, the simulated 129Xe NMR line shape is axially symmetric with chemical-shift tensor components delta(parallel) = 379 ppm and delta(perpendicular) = 274 ppm. Although the simulated isotropic chemical shift, delta(iso) = 309 ppm, is overestimated, the anisotropy of the chemical-shift tensor is correctly predicted. The simulations provide an explanation for the observed trend in the 129Xe NMR line shapes as a function of the overhead xenon pressure: delta(perpendicular) increased from 274 to 292 ppm, while delta(parallel) changed by only 3 ppm over the entire xenon loading range. The overestimation of the isotropic chemical shifts is explained based upon the results of quantum mechanical 129Xe shielding calculations of xenon interacting with an isolated (+/-)-[Co(en)3]Cl3 molecule. The xenon chemical shift is shown to be reduced by about 12% going from the Xe@[Co(en)3]Cl3 van der Waals complex to the Xe@C2H6 fragment.  相似文献   

17.
Localization of PdCl2 clusters supported on multi-wall carbon nanotubes (MWCNT) has been investigated using 129Xe NMR of adsorbed xenon. As-made MWCNTs with channels initially inaccessible for adsorption and ball-milled MWCNTs with the totally accessible internal surface were used as supports. The observed 129Xe NMR spectra were determined by the dynamics of xenon exchange between the aggregate pores and nanotube channels. No considerable changes of the 129Xe NMR spectrum with the concentration of supported PdCl2 were observed for the as-made MWCNT, while an additional resonance appeared for the ball-milled nanotubes. The 129Xe NMR experiments evidenced the supported species to be localized on the internal surface of the ball-milled MWCNT.  相似文献   

18.
Temperature and pressure dependences of the 129Xe NMR chemical shift and the signal intensity have been investigated using ZSM-5 as an adsorbent under routine conditions without using any high-pressure or especially high-temperature facilities. The use of a rigorously shielded system and a calibration sample for the signal intensity was found to be valuable to obtain reliable data about the chemical shift and the signal intensity. The 129Xe NMR data obtained between 0.05 and 1.5 atm and from 24 to 80 degrees C were analyzed based on the Dubinin-Radushkevich equation as well as the Langmuir type equation. In both analyses, chemical shift data succeeded only partially in providing the profile of adsorption, such as energetic aspects, surface area, saturated amount of Xe adsorption and specific parameters of 129Xe chemical shift. It was shown that the reliable total analysis was achieved when the chemical shift data were used together with the intensity data. Such an analysis of the chemical shift data, aided by the intensity data, will be useful in performing nano-material analysis on 129Xe NMR without invoking the traditional methodology of gravimetric or volumetric adsorption experiments.  相似文献   

19.
Variable-temperature hyperpolarized (HP) 129Xe NMR spectroscopy has been employed to characterize surface properties of mesoporous MCM-41 modified by silylation treatment. The characteristic chemical shifts responsible for Xe-surface interactions exhibit strong correlations with both the surface coverage and chain length of the grafted alkylsilanes. Consequently, the deshielding medium contribution due to individual alkyl ligand can be deduced based on the group contribution analysis revealing the potential use of HP 129Xe NMR for probing the surface properties of organic-functionalized porous materials.  相似文献   

20.
Hyperpolarized (129)Xe NMR spectroscopy is used to establish the solid-state porosity of shape-persistent macrocycles with either an organic or metal-organic framework. These studies show that even upon removal of cocrystallized solvent molecules, the macrocycles maintain a porous or channeled structure. The technique can provide valuable information about systems for which X-ray crystallographic analysis is not feasible. [structure: see text]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号