首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
It is proved that for all fractionall the integral \(\int\limits_0^\infty {(p,\ell ) - cap(M_t )} dt^p\) is majorized by the P-th power norm of the functionu in the space ? p l (Rn) (here Mt={x∶¦u(x)¦?t} and (p,l)-cap(e) is the (p,l)-capacity of the compactum e?Rn). Similar results are obtained for the spaces W p l (Rn) and the spaces of M. Riesz and Bessel potentials. One considers consequences regarding imbedding theorems of “fractional” spaces in ?q(dμ), whereμ is a nonnegative measure in Rn. One considers specially the case p=1.  相似文献   

2.
Let (n k ) k≧1 be a lacunary sequence of positive integers, i.e. a sequence satisfying n k+1/n k > q > 1, k ≧ 1, and let f be a “nice” 1-periodic function with ∝ 0 1 f(x) dx = 0. Then the probabilistic behavior of the system (f(n k x)) k≧1 is very similar to the behavior of sequences of i.i.d. random variables. For example, Erd?s and Gál proved in 1955 the following law of the iterated logarithm (LIL) for f(x) = cos 2πx and lacunary $ (n_k )_{k \geqq 1} $ : (1) $$ \mathop {\lim \sup }\limits_{N \to \infty } (2N\log \log N)^{1/2} \sum\limits_{k = 1}^N {f(n_k x)} = \left\| f \right\|_2 $$ for almost all x ∈ (0, 1), where ‖f2 = (∝ 0 1 f(x)2 dx)1/2 is the standard deviation of the random variables f(n k x). If (n k ) k≧1 has certain number-theoretic properties (e.g. n k+1/n k → ∞), a similar LIL holds for a large class of functions f, and the constant on the right-hand side is always ‖f2. For general lacunary (n k ) k≧1 this is not necessarily true: Erd?s and Fortet constructed an example of a trigonometric polynomial f and a lacunary sequence (n k ) k≧1, such that the lim sup in the LIL (1) is not equal to ‖f2 and not even a constant a.e. In this paper we show that the class of possible functions on the right-hand side of (1) can be very large: we give an example of a trigonometric polynomial f such that for any function g(x) with sufficiently small Fourier coefficients there exists a lacunary sequence (n k ) k≧1 such that (1) holds with √‖f 2 2 + g(x) instead of ‖f2 on the right-hand side.  相似文献   

3.
This note mainly aims to improve the inequality, proposed by Böttcher and Wenzel, giving the upper bound of the Frobenius norm of the commutator of two particular matrices in ? n×n . We first propose a new upper bound on basis of the Böttcher and Wenzel’s inequality. Motivated by the method used, the inequality ‖XY ? XY F 2 ≤ 2‖X F 2 Y F 2 is finally improved into $$ \left\| {XY - YX} \right\|_F^2 \leqslant 2\left\| X \right\|_F^2 \left\| Y \right\|_F^2 - 2[tr(X^T Y)]^2 . $$ . In addition, a further improvement is made.  相似文献   

4.
For the equation $$Lu = \frac{1}{i}\frac{{du}}{{dt}}\sum\nolimits_{j = 0}^m {A_j u} (l - h_j^0 - h_j^1 (t)) = f(t),$$ whereh 0 o =0,h 0 1 =0 (t) ≡ 0,h j o = const > 0,h 1 j (t),j= 1, ...,m are nonnegative continuously differentiable functions in [0, ∞), Aj are bounded linear operators, under conditions on the resolvent and on the right hand sidef(t), we have obtained an asymptotic formula for any solution u(t) from L2 in terms of the exponential solutions uk(t), k=1, ..., n, of the equation $$\frac{1}{i}\frac{{du}}{{dt}} - A_0 u - \sum\nolimits_{j = 0}^m {A_j u} (t - h_j^0 ) = 0,$$ connected with the poles λk, k=1, ..., n, of the resolvent Rλ in a certain strip.  相似文献   

5.
Letf εC[?1, 1], ?1<α,β≤0, let $f \in C[ - 1, 1], - 1< \alpha , \beta \leqslant 0$ , letS n α, β (f, x) be a partial Fourier-Jacobi sum of ordern, and let $$\nu _{m, n}^{\alpha , \beta } = \nu _{m, n}^{\alpha , \beta } (f) = \nu _{m, n}^{\alpha , \beta } (f,x) = \frac{1}{{n + 1}}[S_m^{\alpha ,\beta } (f,x) + ... + S_{m + n}^{\alpha ,\beta } (f,x)]$$ be the Vallée-Poussin means for Fourier-Jacobi sums. It was proved that if 0<a≤m/n≤b, then there exists a constantc=c(α, β, a, b) such that ‖ν m, n α, β ‖ ≤c, where ‖ν m, n α, β ‖ is the norm of the operator ν m, n α, β inC[?1,1].  相似文献   

6.
The Cauchy problem for u t + Σ i = 1 n (φ i (u)) xi = 0 is treated via the theory of semigroups of nonlinear transformations. This treatment requires the development of results concerning the time-independent equation u + Σ i = 1 n (φ i (u)) xi = h for hL 1(Rn), which in turn is studied via the regularized equation $$ u + \sum\nolimits_{i = 1}^n {\left( {\phi _i \left( u \right)} \right)} _{xi} - \varepsilon \Delta u = h $$ .  相似文献   

7.
We consider the space h ν of harmonic functions in R + n+1 with finite norm ‖u ν = sup |u(x, t)|/v(t), where the weight ν satisfies the doubling condition. Boundary values of functions in h ν are characterized in terms of their smooth multiresolution approximations. The characterization yields the isomorphism of Banach spaces h ν l . The results are also applied to obtain the law of the iterated logarithm for the oscillation of functions in h ν along vertical lines.  相似文献   

8.
Several sharp upper and lower bounds for the ratio of two normal probabilities $\mathbb{P}\Biggl(\,\bigcap_{i=1}^{n}\bigl\{\xi^{(1)}_i\leq \mu_i\bigr\}\Biggr)\Big/\mathbb{P}\Biggl(\,\bigcap_{i=1}^{n}\bigl\{\xi^{(0)}_i\leq \mu_i\bigr\}\Biggr)$ are given in this paper for various cases, where (ξ 1 (0) 2 (0) ,…,ξ n (0) ) and (ξ 1 (1) 2 (1) , …,ξ n (1) ) are standard normal random variables with covariance matrices R 0=(r ij 0 ) and R 1=(r ij 1 ), respectively.  相似文献   

9.
LetW(x) be a function that is nonnegative inR, positive on a set of positive measure, and such that all power moments ofW 2 (x) are finite. Let {p n (W 2;x)} 0 denote the sequence of orthonormal polynomials with respect to the weightW 2, and let {α n } 1 and {β n } 1 denote the coefficients in the recurrence relation $$xp_n (W^2 ,x) = \alpha _{n + 1} p_{n + 1} (W^2 ,x) + \beta _n p_n (W^2 ,x) + \alpha _n p_{n - 1} (W^2 ,x).$$ We obtain a sufficient condition, involving mean approximation ofW ?1 by reciprocals of polynomials, for $$\mathop {\lim }\limits_{n \to \infty } {{\alpha _n } \mathord{\left/ {\vphantom {{\alpha _n } {c_n }}} \right. \kern-\nulldelimiterspace} {c_n }} = \tfrac{1}{2}and\mathop {\lim }\limits_{n \to \infty } {{\beta _n } \mathord{\left/ {\vphantom {{\beta _n } {c_{n + 1} }}} \right. \kern-\nulldelimiterspace} {c_{n + 1} }} = 0,$$ wherec n 1 is a certain increasing sequence of positive numbers. In particular, we obtain a sufficient condition for Freud's conjecture associated with weights onR.  相似文献   

10.
Properties of generalized solutions of model nonlinear elliptic systems of second order are studied in the semiball $B_1^ + = B_1 (0) \cap \{ x_n > 0\} \subset $ ? n , with the oblique derivative type boundary condition on $\Gamma _1 = B_1 (0) \cap \{ x_n = 0\} $ . For solutionsuH 1(B 1 + ) of systems of the form $\frac{d}{{dx_\alpha }}a_\alpha ^k (u_x ) = 0, k \leqslant {\rm N}$ , it is proved that the derivatives ux are Hölder in $B_1^ + \cup \Gamma _1 )\backslash \Sigma $ , where Hn?p(σ)=0,p>2. It is shown for continuous solutions u from H1(B1/+) of systems $\frac{d}{{dx_\alpha }}a_\alpha ^k (u,u_x ) = 0$ that the derivatives ux are Hölder on the set $(B_1^ + \cup \Gamma _1 )\backslash \Sigma , dim_\kappa \Sigma \leqslant n - 2$ . Bibliography: 13 titles.  相似文献   

11.
In a domain D=Ω\ER n , we consider a nonlinear higher-order elliptic equation such that the corresponding energy space is W p m (D)?W q 1 (D), q>mp, and estimate a solution u(x) of this equation satisfying the condition u(x)?kf(x)W p m (D)?W q 1 (D), where kR 1, f(x)C 0 (Ω), and f(x)=1 for xF. We establish a pointwise estimate for u(x) in terms of the higher-order capacity of the set F and the distance from the point x to the set F.  相似文献   

12.
LetΩ ? ?2 be a smooth bounded simply connected domain. Consider the functional $$E_\varepsilon (u) = \frac{1}{2}\int\limits_\Omega {\left| {\nabla u} \right|^2 + \frac{1}{{4\varepsilon ^2 }}} \int\limits_\Omega {(|u|^2 - 1)^2 } $$ on the classH g 1 ={u εH 1(Ω; ?);u=g on ?Ω} whereg:?Ω? → ? is a prescribed smooth map with ¦g¦=1 on ?Ω? and deg(g, ?Ω)=0. Let uu ε be a minimizer for Eε onH g 1 . We prove that uε → u0 in \(C^{1,\alpha } (\bar \Omega )\) as ε → 0, where u0 is identified. Moreover \(\left\| {u_\varepsilon - u_0 } \right\|_{L^\infty } \leqslant C\varepsilon ^2 \) .  相似文献   

13.
В работе доказываютс я следующие утвержде ния. Теорема I.Пусть ? n ↓0u \(\sum\limits_{n = 0}^\infty {\varepsilon _n^2 = + \infty } \) .Тогд а существует множест во Е?[0, 1]с μЕ=0 такое что:1. Существует ряд \(\sum\limits_{n = 0}^\infty {a_n W_n } (t)\) с к оеффициентами ¦а n ¦≦{in¦n¦, который сх одится к нулю всюду вне E и ε∥an∥>0.2. Если b n ¦=о(ε n )и ряд \(\sum\limits_{n = 0}^\infty {b_n W_n (t)} \) сх одится к нулю всюду вн е E за исключением быть может некоторого сче тного множества точе к, то b n =0для всех п. Теорема 3.Пусть ? n ↓0u \(\mathop {\lim \sup }\limits_{n \to \infty } \frac{{\varepsilon _n }}{{\varepsilon _{2n} }}< \sqrt 2 \) Тогд а существует множест во E?[0, 1] с υ E=0 такое, что:
  1. Существует ряд \(\sum\limits_{n = - \infty }^{ + \infty } {a_n e^{inx} ,} \sum\limits_{n = - \infty }^{ + \infty } {\left| {a_n } \right|} > 0,\) кот орый сходится к нулю в сюду вне E и ¦an≦¦n¦ для n=±1, ±2, ...
  2. Если ряд \(\sum\limits_{n = - \infty }^{ + \infty } {b_n e^{inx} } \) сходится к нулю всюду вне E и ¦bv¦=о(ε ¦n¦), то bn=0 для всех я. Теорема 5. Пусть послед овательности S(1)={ε 0 (1) , ε 1 (1) , ε 2 (1) , ...} u S2 0 (2) , ε 1 (2) . ε 2 (2) монотонно стремятся к нулю, \(\mathop {\lim \sup }\limits_{n \to \infty } \varepsilon ^{(i)} /\varepsilon _{2n}^{(i)}< 2,i = 1,2\) , причем \(\mathop {\lim }\limits_{n \to \infty } \varepsilon _n^{(2)} /\varepsilon _n^{(i)} = + \infty \) . Тогда для каждого ε>O н айдется множество Е? [-π,π], μE >2π — ε, которое является U(S1), но не U(S1) — множеством для тригонометричес кой системы. Аналог теоремы 5 для си стемы Уолша был устан овлен в [7].
  相似文献   

14.
Let R be a prime ring, H a nonzero generalized derivation of R and L a noncommutative Lie ideal of R. Suppose that there exists ${0 \neq a \in R}$ such that a(u s H(u)u t ) n = 0 for all ${u \in L}$ , where s ≥ 0, t ≥ 0, n ≥ 1 are fixed integers. Then s = 0, H(x) = bx for all ${x \in R}$ with ab = 0, unless R satisfies s 4, the standard identity in four variables. We also describe completely this last case.  相似文献   

15.
At first Cauchy-problem for the equation: \(L[u(X,t)] \equiv \sum\limits_{i = 1}^n {\frac{{\partial ^2 u}}{{\partial x_1^2 }} + \frac{{2v}}{{\left| X \right|^2 }}} \sum\limits_{i = 1}^n {x_i \frac{{\partial u}}{{\partial x_i }} - \frac{{\partial u}}{{\partial t}} = 0} \) wheren≥1,v—an arbitrary constant,t>0,X=(x 1, …, xn)∈E n/{0}, |X|= =(x 1 2 +…+x n 2 )1/2, with 0 being a centre of coordinate system, is studied. Basing on the above, the solution of Cauchy-Nicolescu problem is given which consist in finding a solution of the equationL p [u (X, t)]=0, withp∈N subject the initial conditions \(\mathop {\lim }\limits_{t \to \infty } L^k [u(X,t)] = \varphi _k (X)\) ,k=0, 1,…,p?1 and ?k(X) are given functions.  相似文献   

16.
In this paper we shall assert that if T is an isomorphism of L1, A, μ) into L2, B, υ) satisfying the condition ‖T‖·‖T ?1‖?1+? for ?∈ $\left( {0,\frac{1}{5}} \right)$ , then $\frac{T}{{\parallel T\parallel }}$ is close to an isometry with an error less than 6ε in some conditions.  相似文献   

17.
In this paper we consider the following Dirichlet problem for elliptic systems: $$\begin{array}{*{20}c} {\overline {DA\left( {x,u\left( x \right),Du\left( x \right)} \right)} = B\left( {x,u\left( x \right),Du\left( x \right)} \right), x \in \Omega ,} \\ {u\left( x \right) = 0, x\partial \Omega } \\ \end{array}$$ where D is a Dirac operator in Euclidean space, u(x) is defined in a bounded Lipschitz domain Ω in ? n and takes value in Clifford algebras. We first introduce variable exponent Sobolev spaces of Clifford-valued functions, then discuss the properties of these spaces and the related operator theory in these spaces. Using the Galerkin method, we obtain the existence of weak solutions to the scalar part of the above-mentioned systems in the space W 0 1,p(x) (Ω,C? n ) under appropriate assumptions.  相似文献   

18.
We consider the inverse problem of recovering the potential for the Sturm-Liouville operator Ly = ?y″ + q(x)y on the interval [0, π] from the spectrum of the Dirichlet problem and norming constants (from the spectral function). For a fixed θ ≥ 0, with this problem we associate a map F: W 2 θ l D θ , F(σ) = {s k } 1 , where W 2 θ = W 2 θ [0, π] is the Sobolev space, σ = ∫ q is a primitive of the potential qW 2 θ ? 1 , and l D θ is a specially constructed finite-dimensional extension of the weighted space l 2 θ ; this extension contains the regularized spectral data s = {s k } 1 for the problem of recovering the potential from the spectral function. The main result consists in proving both lower and upper uniform estimates for the norm of the difference ‖σ ? σ 1 θ in terms of the l D θ norm of the difference of the regularized spectral data ‖s ? s1 θ . The result is new even for the classical case qL 2, which corresponds to the case θ = 1.  相似文献   

19.
Let (X k) k≥0 be a sequence of independent copies of a random variableX taking its values in a real separable Banach space (B, ¦ ¦). For every real number β>?1 one defines the following coefficients: $$A_0^\beta = 1, A_1^\beta = \beta + 1,..., A_k^\beta = (\beta + 1) \cdots (\beta + k)/k!,...$$ It is shown that for all α∈]0, 1[ the sequenceV n =(1/A n α )∑0?k?n A n?k α?1 X k converges almost surely toE(X) if and only if ‖X1/α is integrable. This extends results obtained earlier by several authors for scalar-valued random variables: Lorentz (case 1/2<α<1), Chow and Lai (case 0<α<1/2), Déniel and Derriennic (case α=1/2).  相似文献   

20.
Consider the Sobolev space W 2 n (?+) on the semiaxis with norm of general form defined by a quadratic polynomial in derivatives with nonnegative coefficients. We study the problem of exact constants A n,k in inequalities of Kolmogorov type for the values of intermediate derivatives |f (k)(0)| ≤ A n,k f‖. In the general case, the expression for the constants A n,k is obtained as the ratio of two determinants. Using a general formula, we obtain an explicit expression for the constants A n,k in the case of the following norms: $$ \left\| f \right\|_1^2 = \left\| f \right\|_{L_2 }^2 + \left\| {f^{(n)} } \right\|_{L_2 }^2 and\left\| f \right\|_2^2 = \sum\limits_{l = 0}^n {\left\| {f^{(l)} } \right\|_{L_2 }^2 } . $$ In the case of the norm ‖ · ‖1, formulas for the constants A n,k were obtained earlier by another method due to Kalyabin. The asymptotic behavior of the constants A n,k is also studied in the case of the norm ‖ · ‖2. In addition, we prove a symmetry property of the constants A n,k in the general case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号