首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
We present a rigorous proof that quantum circuit algorithm can be transformed into quantum adiabatic algorithm with the exact same time complexity. This means that from a quantum circuit algorithm of L gates we can construct a quantum adiabatic algorithm with time complexity of O(L). Additionally, our construction shows that one may exponentially speed up some quantum adiabatic algorithms by properly choosing an evolution path.  相似文献   

2.
The graph-theoretic Ramsey numbers are notoriously difficult to calculate. In fact, for the two-color Ramsey numbers R(m,n) with m, n≥3, only nine are currently known. We present a quantum algorithm for the computation of the Ramsey numbers R(m,n). We show how the computation of R(m,n) can be mapped to a combinatorial optimization problem whose solution can be found using adiabatic quantum evolution. We numerically simulate this adiabatic quantum algorithm and show that it correctly determines the Ramsey numbers R(3,3) and R(2,s) for 5≤s≤7. We then discuss the algorithm's experimental implementation, and close by showing that Ramsey number computation belongs to the quantum complexity class quantum Merlin Arthur.  相似文献   

3.
We apply the transitionless driving on the local adiabatic quantum search algorithm to speed up the adiabatic process.By studying quantum dynamics of the adiabatic search algorithm with the equivalent two-level system, we derive the transitionless driving Hamiltonian for the local adiabatic quantum search algorithm. We found that when adding a transitionless quantum driving term H_D(t) on the local adiabatic quantum search algorithm, the success rate is 1 exactly with arbitrary evolution time by solving the time-dependent Schr odinger equation in eigen-picture. Moreover, we show the reason for the drastic decrease of the evolution time is that the driving Hamiltonian increases the lowest eigenvalues to a maximum of ON~(1/2).  相似文献   

4.
Among various algorithms designed to exploit the specific properties of quantum computers with respect to classical ones, the quantum adiabatic algorithm is a versatile proposition to find the minimal value of an arbitrary cost function (ground state energy). Random optimization problems provide a natural testbed to compare its efficiency with that of classical algorithms. These problems correspond to mean field spin glasses that have been extensively studied in the classical case. This paper reviews recent analytical works that extended these studies to incorporate the effect of quantum fluctuations, and presents also some original results in this direction.  相似文献   

5.
We present a perturbative method to estimate the spectral gap for adiabatic quantum optimization, based on the structure of the energy levels in the problem Hamiltonian. We show that, for problems that have an exponentially large number of local minima close to the global minimum, the gap becomes exponentially small making the computation time exponentially long. The quantum advantage of adiabatic quantum computation may then be accessed only via the local adiabatic evolution, which requires phase coherence throughout the evolution and knowledge of the spectrum. Such problems, therefore, are not suitable for adiabatic quantum computation.  相似文献   

6.
Quantum pattern recognition algorithm for two-qubit systems has been implemented by quantum adiabatic evolution.We will estimate required running time for this algorithm by means of an analytical solution of timedependent Hamiltonian since the time complexity of adiabatic quantum evolution is a limitation on the quantum computing.These results can be useful for experimental implementation.  相似文献   

7.
Xu N  Zhu J  Lu D  Zhou X  Peng X  Du J 《Physical review letters》2012,108(13):130501
Quantum algorithms could be much faster than classical ones in solving the factoring problem. Adiabatic quantum computation for this is an alternative approach other than Shor's algorithm. Here we report an improved adiabatic factoring algorithm and its experimental realization to factor the number 143 on a liquid-crystal NMR quantum processor with dipole-dipole couplings. We believe this to be the largest number factored in quantum-computation realizations, which shows the practical importance of adiabatic quantum algorithms.  相似文献   

8.
We put forward an alternative quantum algorithm for finding Hamiltonian cycles in any N-vertex graph based on adiabatic quantum computing. With a von Neumann measurement on the final state, one may determine whether there is a Hamiltonian cycle in the graph and pick out a cycle if there is any. Although the proposed algorithm provides a quadratic speedup, it gives an alternative algorithm based on adiabatic quantum computation, which is of interest because of its inherent robustness.  相似文献   

9.
It has been recently argued that adiabatic quantum optimization would fail in solving NP-complete problems because of the occurrence of exponentially small gaps due to crossing of local minima of the final Hamiltonian with its global minimum near the end of the adiabatic evolution. Using perturbation expansion, we analytically show that for the NP-hard problem known as maximum independent set, there always exist adiabatic paths along which no such crossings occur. Therefore, in order to prove that adiabatic quantum optimization fails for any NP-complete problem, one must prove that it is impossible to find any such path in polynomial time.  相似文献   

10.
We study the typical (median) value of the minimum gap in the quantum version of the exact cover problem using quantum Monte Carlo simulations, in order to understand the complexity of the quantum adiabatic algorithm for much larger sizes than before. For a range of sizes N< or =128, where the classical Davis-Putnam algorithm shows exponential median complexity, the quantum adiabatic algorithm shows polynomial median complexity. The bottleneck of the algorithm is an isolated avoided-crossing point of a Landau-Zener type (collision between the two lowest energy levels only).  相似文献   

11.
李华钟 《物理学进展》2011,28(4):396-400
本文引介绝热量子计算理论评述量子绝热定理最新的应用。基于量子绝热方法在最新的前沿领域量子计算中建立量子绝热算法。我们引介"局域量子绝热",并考虑了这一局域绝热概念对量子算法的可能应用。  相似文献   

12.
绝热量子计算理论引介   总被引:2,自引:0,他引:2  
本文引介绝热量子计算理论评述量子绝热定理最新的应用.基于量子绝热方法在最新的前沿领域量子计算中建立量子绝热算法.我们引介"局域量子绝热",并考虑了这一局域绝热概念对量子算法的可能应用.  相似文献   

13.
Numerous sufficient conditions for adiabaticity of the evolution of a driven quantum system have been known for quite a long time. In contrast, necessary adiabatic conditions are scarce. Recently a practicable necessary condition well suited for many-body systems has been proved. Here we tailor this condition for estimating run times of adiabatic quantum algorithms. As an illustration, the condition is applied to the adiabatic algorithm for searching in an unstructured database (adiabatic Grover search algorithm). We find that the thus obtained lower bound on the run time of this algorithm reproduces \( \sqrt{N} \) scaling (with N being the number of database entries) of the explicitly known optimum run time. This is in contrast to the poor performance of the known sufficient adiabatic conditions, which guarantee adiabaticity only for a run time on the order of O(N), which does not constitute any speedup over the classical database search. This observation highlights the merits of the new adiabatic condition and its potential relevance to adiabatic quantum computing.  相似文献   

14.
张映玉  胡和平  路松峰 《中国物理 B》2011,20(4):40309-040309
This paper presents and implements a specified partial adiabatic search algorithm on a quantum circuit. It studies the minimum energy gap between the first excited state and the ground state of the system Hamiltonian and it finds that,in the case of M = 1,the algorithm has the same performance as the local adiabatic algorithm. However,the algorithm evolves globally only within a small interval,which implies that it keeps the advantages of global adiabatic algorithms without losing the speedup of the local adiabatic search algorithm.  相似文献   

15.
This paper proposes a scheme for implementing the adiabatic quantum search algorithm of different marked items in an unsorted list of N items with atoms in a cavity driven by lasers. N identical three-level atoms are trapped in a single-mode cavity. Each atom is driven by a set of three pulsed laser fields. In each atom, the same level represents a database entry. Two of the atoms are marked differently. The marked atom has an energy gap between its two ground states. The two different marked states can be sought out respectively starting from an initial entangled state by controlling the ratio of three pulse amplitudes. Moreover, the mechanism, based on adiabatic passage, constitutes a decoherence-free method in the sense that spontaneous emission and cavity damping are avoided since the dynamics follows the dark state. Furthermore, this paper extends the algorithm with m (m>2) atoms marked in an ideal situation. Any different marked state can be sought out.  相似文献   

16.
In this paper, we study the role of prior probability on the efficiency of quantum local adiabatic search algorithm. The following aspects for prior probability are found here: firstly, only the probabilities of marked states affect the running time of the adiabatic evolution; secondly, the prior probability can be used for improving the efficiency of the adiabatic algorithm; thirdly, like the usual quantum adiabatic evolution, the running time for the case of multiple solution states where the number of marked elements are smaller enough than the size of the set assigned that contains them can be significantly bigger than that of the case where the assigned set only contains all the marked states.  相似文献   

17.
《Physics letters. A》2006,354(4):271-273
Deutsch–Jozsa algorithm has been implemented via a quantum adiabatic evolution by S. Das et al. [S. Das, R. Kobes, G. Kunstatter, Phys. Rev. A 65 (2002) 062310]. This adiabatic algorithm gives rise to a quadratic speed up over classical algorithms. We show that a modified version of the adiabatic evolution in that paper can improve the performance to constant time.  相似文献   

18.
量子势阱粒子群优化算法的改进研究   总被引:4,自引:0,他引:4       下载免费PDF全文
李盼池  王海英  宋考平  杨二龙 《物理学报》2012,61(6):60302-060302
为提高量子势阱粒子群优化算法的优化能力, 通过分析目前量子势阱粒子群优化算法的设计过程, 提出了改进的量子势阱粒子群优化算法. 首先, 分别基于Delta势阱、谐振子和方势阱 提出了改进的量子势阱粒子群优化算法, 并提出了基于统计量均值的控制参数设计方法. 然后, 在势阱中心的设计方面, 为强调全局最优粒子的指导作用, 提出了基于自身最优粒子加权平均和动态随机变量的两种设计策略. 实验结果表明, 三种势阱粒子群优化算法性能比较接近, 都优于原算法, 且Delta势阱模型略优于其他两种.  相似文献   

19.
Based on the Born-Oppenhemer approximation, the concept of adiabatic quantum entanglement is introduced to account for quantum decoherence of a quantum system due to its interaction with a large system of one or a few degrees of freedom. In the adiabatic limit, it is shown that the wave function of the total system formed by the quantum system plus the large system can be factorized as an entangled state with correlation between adiabatic quantum states and quasi-classical motion configurations of the large system. In association with a novel viewpoint about quantum measurement, which has been directly verified by most recent experiments [e.g., S. Durr et al., Nature 33, 359 (1998)], it is shown that the adiabatic entanglement is indeed responsible for the quantum decoherence and thus can be regarded as a “clean” quantum measurement when the large system behaves as a classical object. By taking the large system respectively to be a macroscopically distinguishable spatial variable, a high spin system and a harmonic oscillator with a coherent initial state, three illustrations are presented with their explicit solutions in this paper. Received 26 February 2000 and Received in final form 14 July 2000  相似文献   

20.
孙杰  路松峰  刘芳  杨莉萍 《中国物理 B》2012,21(1):10306-010306
Recently, Zhang and Lu provided a quantum search algorithm based on partial adiabatic evolution, which beats the time bound of local adiabatic search when the number of marked items in the unsorted database is larger than one. Later, they found that the above two adiabatic search algorithms had the same time complexity when there is only one marked item in the database. In the present paper, following the idea of Roland and Cerf [Roland J and Cerf N J 2002 Phys. Rev. A 65 042308], if within the small symmetric evolution interval defined by Zhang et al., a local adiabatic evolution is performed instead of the original “global” one, this “new” algorithm exhibits slightly better performance, although they are progressively equivalent with M increasing. In addition, the proof of the optimality for this partial evolution based local adiabatic search when M=1 is also presented. Two other special cases of the adiabatic algorithm obtained by appropriately tuning the evolution interval of partial adiabatic evolution based quantum search, which are found to have the same phenomenon above, are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号