首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Christian Hess 《Surface science》2006,600(18):3695-3701
Nanostructured vanadia model catalysts, i.e., highly dispersed vanadium oxide supported on mesoporous silica SBA-15 (VOx/SBA-15), were prepared. The mechanism for the synthesis of VOx/SBA-15 was elucidated by detailed characterization of the individual synthesis steps using XPS and vibrational spectroscopy. The resulting surface vanadium oxide species (0-2.3 V/nm2), grafted on the inner pores of the SBA-15 silica matrix, consists of tetrahedrally coordinated vanadia as inferred from UV-VIS- and Raman spectroscopy. The prepared vanadia model catalysts were tested in the partial oxidation of methanol to formaldehyde yielding high formaldehyde selectivities of 94% at 350 °C. XPS and Raman analysis of the catalyst after reaction reveal the presence of methoxy as well as a significant amount of carbonaceous species on the surface. Our results demonstrate that a detailed understanding of partial oxidation reactions requires the combination of complementary spectroscopic techniques ultimately within one experimental set-up.  相似文献   

2.
Multi-walled carbon nanotubes (MWCNTs) supported Cu-Ni bimetallic catalysts for the direct synthesis of dimethyl carbonate (DMC) from CH3OH and CO2 were synthesized and investigated. The supporting materials and the synthesized catalysts were fully characterized using FTIR, scanning electron microscopy (SEM), transmission electron microscopy (TEM), temperature-programmed reduction (TPR), X-ray diffraction (XRD) and X-ray photoelectron spectrum (XPS) techniques. The catalytic activities were investigated by performing micro-reactions. The experimental results showed that the metal phase and Cu-Ni alloy phase in the catalyst were partially formed during the calcination and activation step. Active metal particles were dispersed homogeneously on the surface of the MWCNTs. Cu-Ni/MWCNTs catalysts were efficient for the direct synthesis of DMC. The highest conversion of CH3OH was higher than 4.3% and the selectivity of DMC was higher than 85.0% under the optimal catalytic conditions of 120 °C and around 1.2 MPa. The high catalytic activity of Cu-Ni/MWCNTs in DMC synthesis can be attributed to the synergetic effects of metal Cu, Ni and Cu-Ni alloy in the activation of CH3OH and CO2, the unique structure of MWCNTs and the interaction between the metal particles and the supports.  相似文献   

3.
The ceria-zirconium-modified alumina-supported palladium catalysts are prepared using impregnation method with H2PdCl4 as Pd source, hydrazine hydrate as reducing agent. The physicochemical properties of these catalysts are characterized by BET surface area (BET), X-ray powder diffraction (XRD), transmission electron microscopy (TEM), temperature programmed reduction (H2-TPR) and temperature programmed oxidation (O2-TPO) techniques, and their catalytic activities for the combustion of methane are examined. The results show that the palladium mainly exist in a highly dispersed PdO species on Ce-Zr-rich grains as well as Al2O3-rich grains surfaces, and a stable PdO species due to the strong interaction between PdO and CeO2-ZrO2 on the Ce-Zr/Al2O3 surfaces. The catalytic activity is strongly related to the redox behavior of PdO species highly dispersed on Ce-Zr-rich grains and Al2O3-rich grains surfaces, and the higher the reducibility of the PdO species, the higher the catalytic activity. The presence of Ce-Zr in Pd/Al2O3 catalyst would inhibit the site growth of PdOx particles and decomposition of PdO to Pd0, and the reoxidation property of Pd0 to PdOx is significantly improved, which obviously increases thermal stability and catalytic activity of Pd/Ce-Zr/Al2O3 catalyst for the methane combustion.  相似文献   

4.
High-activity, visible-light-driven photocatalysts were prepared by forming N-doped TiO2 on multi-walled carbon nanotubes (MWCNTs). The use of MWCNTs as the support in a N-doped TiO2 system favored electron trapping, because the recombination process could be retarded, thus promoting photocatalytic activity. The prepared photocatalysts were systematically characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Brunaure–Emmett–Teller (BET) spectroscopy, and UV–Vis diffuse reflectance spectroscopy (UV–Vis/DRS). The results indicated that the N-doped TiO2 coated on MWCNTs improved the surface area and slightly modified the optical properties of the composite. The activities of the photocatalysts were probed by photodegradation of methanol in the presence of visible light irradiation. The experimental results revealed that the strong interphase linkage between the MWCNTs and the N-doped TiO2 played a significant role in improving photocatalytic activity. However, the mechanical process for MWCNT–TiO2-x N x mixtures showed lower activity than just pure N-doped TiO2. In this study, N-doped TiO2 precursors coated with pretreated MWCNTs during a sol–gel process could effectively form a MWCNT–TiO2-x N x composite. The composite showed excellent activity and effectively enhanced the efficiency of N-doped TiO2 under the visible light region.  相似文献   

5.
Results of a comprehensive study of the interface interaction of a nanostructured CuOx and multiwalled carbon nanotubes (MWCNTs) in CuOx/MWCNT nanocomposite by X-ray absorption spectroscopy (XANES, NEXAFS) and X-ray photoelectron spectroscopy (XPS) methods using a synchrotron radiation are presented. It is established that a nanostructured CuOx in CuOx/MWCNT nanocomposite is predominantly formed by CuO and has the form of flakelike particles 200–500 nm in size uniformly dispersed over an array of nanotubes. A chemical interaction of CuOx and nanotubes with formation of covalent carbon–oxygen bonds, which does not lead to a significant destruction of the outer layers of carbon nanotubes, is observed at the interfaces of the nanocomposite.  相似文献   

6.
7.
In this paper, WxTi1−xO2 solid solutions (x = 0.000, 0.005, 0.010, 0.015, and 0.020) microspheres were synthesized with an aerosol-assisted flow synthesis method. The resulting samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen sorption, UV-vis diffuse reflectance spectrum (DRS) and X-ray photoelectron spectroscopy (XPS). The photocatalytic activities of the as-prepared catalysts were measured by the degradation of rhodamine B (RhB) under visible light irradiation (λ ≥ 420 nm). All the solid solutions exhibited higher photocatalytic activities than pure TiO2 and the W0.015Ti0.985O2 solid solution possessed the highest photocatalytic activity. The degradation constant of RhB on W0.015Ti0.985O2 solid solution catalyst was about 15 times of that of the pure TiO2 and 25 times of that of Degussa P25, respectively. This study provides an effective method to prepare visible light photocatalysts on a large scale.  相似文献   

8.
This study focused on preparation of tungsten oxide supported on zirconia by thermal spreading. The prepared samples were characterized by infrared spectroscopy, UV-vis diffuse reflection spectroscopy, X-ray diffraction, and also by methanol dehydration reaction. It was observed that isolated octahedral tungsten dispersed species and dispersed polytungstate were formed on zirconia surface, although some WO3 that remained after the thermal treatment could also be detected. The presence of these species led to an increase of the number of Lewis sites and the generation of Brönsted acid sites. High calcination temperatures promoted the creation of Brönsted sites as a consequence of polytungstate species formation. The activity on methanol dehydration was also determined by the concentration of these species, whereas the isolated WOx species were found poorly active. The correlation observed between the catalytic performance and the tungsten dispersed species, as revealed by spectroscopic techniques, evidenced the occurrence of thermal spreading of WO3 on ZrO2. The results presented in this work show that WO3 thermal spreading on ZrO2 may be effectively accomplished as predicted by thermodynamics.  相似文献   

9.
The Pd-Ce interaction was studied over CeO2 (0.3-2.5 wt.%)-Pd (1 wt.%)/α-Al2O3 catalysts used in the reforming reaction of CH4 with CO2. The samples were characterized by using high resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS). The activity and selectivity behavior was in good agreement with that of other supported metal catalysts (Ni and Pd) modified with different promoters. The preliminary results of HRTEM would indicate that the CeOx forms small crystallites around the Pd particle. The XPS analysis for the regions of Ce 3d and Pd 3d, gives an account of Ce being present mostly as Ce3+ and a high binding energy for Pd 3d5/2 (335.3 eV), an evidence of Pd-Ce chemical interaction. The Pd/Al XPS intensity ratios vs. the Pd average particle size, determined by TEM, show an excellent correlation for fresh and used catalyst. These results indicate that the diminution of the Pd/Al ratios was due to Pd sintering. Consequently, the small amounts of CeOx species do not cover the Pd particle, in agreement with the HRTEM results. The overall results stand for the promoter action mechanism of the CeOx for the reforming reaction with CO2.  相似文献   

10.
A thorough investigation of the catalysts Mo1Te1Ox/SiO2 and Mo1Bi0.05Te1Ox/SiO2 in the partial oxidation of propane is presented in this paper, in order to elucidate the nature and behavior of the active surface. The catalysts’ structures and redox properties were investigated by means of X-ray powder diffraction, Raman spectroscopy, in situ Raman spectroscopy, X-ray photoelectron spectroscopy, and H2-TPR techniques. The results indicate that Te-polymolybdate is the main active phase on fresh catalysts. During reaction, the catalysts underwent a progressive reduction, resulting in the reconstruction of the active surface and the formation of a MoO3 phase. The synergistic effect between Te-polymolybdate and MoO3 was assumed to promote catalytic performance. The different stabilities of Mo1Te1Ox/SiO2 and Mo1Bi0.05Te1Ox/SiO2 catalysts are also discussed.  相似文献   

11.
Preparation, characterization, and electrocatalytic study of the electrodeposited Pt and Pd (e.g., Pt and PtPd) catalysts on titanium dioxide (TiO2) modified reduced graphene oxide (rGO) support for formic acid oxidation were performed. The catalyst composites are labeled as xPt/rGO-TiO2, xPtyPd/rGO-TiO2, and yPd/rGO-TiO2 where x and y are cycle numbers of metal electrodeposition (x and y?=?2–6). The characterizations of the catalysts were performed by Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Small and dispersed metal nanoparticles are obtained on rGO-TiO2. The catalytic performances for formic acid oxidation were measured by cyclic voltammetry (CV) and chronoamperometry (CA). The electrocatalytic results reveal that the bimetallic 4Pt2Pd/rGO-TiO2 catalyst facilitates formic acid oxidations at the lowest potentials and generates the highest oxidation currents and also improves the highest CO oxidation compared to the monometallic 6Pt/rGO-TiO2 catalyst. According to the experimental data, the Pd and TiO2 enhance the electrocatalytic activity of the catalysts towards the formic acid oxidation; the improved catalytic performance of the prepared catalysts strongly relates to the high electrochemically active surface area (ECSA) investigated.
Graphical abstract TEM image of xPtyPd/rGO-TiO2 and its CV towards oxidation
  相似文献   

12.
Multi-walled carbon nanotubes (MWCNTs) placed under nitrogen (N2) and argon (Ar) microwave plasma in order to functionalize covalently their side walls with nitrogen containing groups. X-ray photoelectron spectroscopy (XPS) study shows surface modification of the MWCNTs with imine, amine, nitride and amide groups grafted on the side walls. Due to the functional groups, homogenous distribution of MWCNTs in solvent could be obtained. For photovoltaic device fabrication MWCNTs film was casted over n-Si wafer and poly(3-octylthiophene) solution was infiltered. Devices with functionalized MWCNTs show short circuit current density (Jsc), open circuit voltage (Voc), fill factor (FF) and power conversion efficiency (η) as 1.8 mA/cm2, 0.20 V, 24% and 0.086%, respectively. In the composite film functionalized MWCNTs facilitate photo induced charge separation and efficient holes transportation, suppressing recombination of photo generated charges.  相似文献   

13.
A series of CuO/CeO2 catalysts with different Cu-Ce compositions were synthesized by co-precipitation method and characterized by X-ray diffraction, H2-TPR, CO-TPD, SEM and X-ray photoelectron spectroscopy (XPS) techniques. The effects of Cu-Ce composition and water vapor on the catalytic properties for the selective CO oxidation in the hydrogen-rich gas were investigated. The results indicated that CuO (10%)/CeO2 catalyst remained the maximum CO conversion and selectivity at 140 and 160 °C, while the performance of CuO/CeO2 catalysts deteriorated with the CuO molar ratio further increased. The interfacial CuO and CeO2 interaction and synergistic effect enhanced the redox properties of CuO/CeO2 catalyst and the highly dispersed copper species were proposed as the active sites for the selective CO oxidation. The blockage of catalytic active sites by absorbed water and the formation of CO-H2O surface complexes reduced the activity of CuO (10%)/CeO2 catalyst. The decreasing of surface lattice oxygen and absorbed oxygen species and the agglomeration of copper particles were the plausible interpretations for the deactivation of CuO (10%)/CeO2 catalyst.  相似文献   

14.
Monometallic Pt and Rh and bimetallic PtRh catalysts with a highly dispersed noble metal weight loading of ca. 1 wt% were produced via the direct deposition of nanoparticles on different SiO2 supports by means of pulsed ultra-violet (248 nm) excimer laser ablation of Pt, Rh bulk metal and PtRh alloy targets. Backscattered electron microscopy (BSE), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) were employed to characterize the deposited nanoparticles, which were found to exhibit narrow size distribution centred around 2.5 nm. The catalytic activities for lean NO x reduction of the monometallic and bimetallic catalyst samples were investigated in a flow reactor setup in the temperature range 100–400°C using a test gas mixture representative of oxygen rich diesel engine exhaust gas. For comparison a Rh/SiO2 reference catalyst prepared by a conventional impregnation method was also tested. Further experiments were performed in which PtRh nanoparticles were deposited on a Rh/SiO2 reference catalyst sample to study the possibility for controlled modification of its activity. The catalytic activity measurements revealed that among the samples solely prepared by laser deposition the PtRh–SiO2 nanoparticle catalyst showed the highest activity for NO x reduction at low temperatures 100–300°C. In addition, it could be demonstrated that the initially low NO x reduction activity and the N2 selectivity of the Rh/SiO2 reference catalyst sample for temperatures below 250°C can be enhanced by post laser deposition of PtRh nanoparticles.  相似文献   

15.
Au/TiO2/Ru(0 0 0 1) model catalysts and their interaction with CO were investigated by scanning tunneling microscopy and different surface spectroscopies. Thin titanium oxide films were prepared by Ti deposition on Ru(0 0 0 1) in an O2 atmosphere and subsequent annealing in O2. By optimizing the conditions for deposition and post-treatment, smooth films were obtained either as fully oxidized TiO2 or as partly reduced TiOx, depending on the preparation conditions. CO adsorbed molecularly on both oxidized and reduced TiO2, with slightly stronger bonding on the reduced films. Model catalyst surfaces were prepared by depositing submonolayer quantities of Au on the films and characterized by X-ray photoelectron spectroscopy and scanning tunneling microscopy. From X-ray photoelectron spectroscopy, a weak interaction between the Au and the TiO2 substrate was found. At 100 K CO adsorption occurred on both the TiO2 film and on the Au nanoparticles. CO desorbed from the Au particles with activation energies between 53 and 65 kJ/mol, depending on the Au coverage. If the Au deposit was annealed to 770 K prior to CO exposure, the CO adsorption energy decreased significantly. STM measurements revealed that the Au particles grow upon annealing, but are not encapsulated by TiOx suboxides. The higher CO adsorption energy observed for smaller Au coverages and before annealing is attributed to a significantly stronger interaction of CO with mono- and bilayer Au islands, while for higher particles, the adsorption energy becomes more bulk-like. The implications of these effects on the known particle size effects in CO oxidation over supported Au/TiO2 catalysts are discussed.  相似文献   

16.
Amorphous carbon nitride (a-CNx) films with functional gradient Ti-TiN/CNx underlayer were deposited by direct current magnetron sputtering. Microstructure and composition of the films were characterized by means of X-ray diffraction (XRD), Raman spectroscopy, atomic force microscope (AFM) and transmission electron microscopy (TEM). Mechanical and tribological properties were investigated by nanoindenter, scratch and ball-on-disk tribometer. The a-CNx-based films suffer a graphitization process with the increasing deposition temperature, thus the hardness and elastic modulus decrease. With the design of the Ti-TiN/CNx gradient underlayers, some important advantages of relatively thick CNx films can be achieved, such as increased hardness, improved adhesion strength, and the wear resistance of the a-CNx-based films can be also improved significantly.  相似文献   

17.
采用固体核磁共振研究了NaOH 和HNO3改性的VOx/Al2O3上甲醇选择性催化氧化反应. 实验结果表明: 在甲醇的氧化反应中, 酸位对二甲氧基甲烷的生成起了重要作用. 与VOx/Al2O3催化剂相比, 酸改性的VOx/Al2O3上的强的Bronsted酸位对二甲氧基甲烷的选择性较高, 没有Bronsted酸位的碱改性的VOx/Al2O3上生成的不是二甲氧基甲烷而是甲酸盐.  相似文献   

18.
Zn1−xNixO (x=0-0.25) hierarchical microspheres were synthesized via a solvothermal process in ethylene glycol. The magnetic microspheres were characterized by X-ray powder diffraction, field-emission scanning electron microscopy, energy-dispersive X-ray spectra, X-ray photoelectron spectroscopy, room-temperature photoluminescence spectra, and vibrating sample magnetometer. The as-prepared samples take on a well-defined spherical architecture following the processes of spontaneous aggregation and localized Ostwald ripening. Dependence of the magnetization and morphology on Ni2+ content was observed. Magnetic hysteresis loops reveal that the Ni-doped ZnO microspheres exhibit ferromagnetic loops at room temperature.  相似文献   

19.
Cu-CeO2 catalysts deposited on a commercial ZrO2 support have been investigated. The catalyst composition has been optimized: the optimum copper content was found to be 5–10 wt % at a cerium oxide content of 23 wt %. The catalysts were investigated by X-ray diffraction analysis and X-ray photoelectron spectroscopy. According to the X-ray diffraction data, the support consists of the monoclinic ZrO2 phase and cubic CeO2 phase with an enlarged lattice parameter, while the catalysts contain CuO. The X-ray photoelectron data indicate the presence of a highly dispersed CuO2 phase interacting with cerium oxide and zirconia on the surface of the catalyst having the optimum copper content.  相似文献   

20.
Hydrogen generation from formic acid (FA) has received significant attention.The challenge is to obtain a highly active catalyst under mild conditions for practical applications.Here atomic layer deposition (ALD) of FeOx was performed to deposit an ultrathin oxide coating layer to a Pd/C catalyst,therein the FeOx coverage was precisely controlled by ALD cycles.Transmission electron microscopy and powder X-ray diffraction measurements suggest that the FeOx coating layer improved the thermal stability of Pd nanoparticles (NPs).X-ray photoelectron spectroscopy measurement showed that deposition of FeOx on the Pd NPs caused a positive shift of Pd3d binding energy.In the FA dehydrogenation reaction,the ultrathin FeOx layer on the Pd/C could considerably improve the catalytic activity,and Pd/C coated with 8 cycles of FeOx showed an optimized activity with turnover frequency being about 2 times higher than the uncoated one.The improved activities were in a volcanoshape as a function of the number of FeOx ALD cycles,indicating the coverage of FeOx is critical for the optimized activity.In summary,simultaneous improvements of activity and thermal stability of Pd/C catalyst by ultra-thin FeOx overlayer suggest to be an effective way to design active catalysts for the FA dehydrogenation reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号