首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
X-ray diffraction (XRD) patterns revealed that the as-grown and annealed Al-doped ZnO (AZO) films grown on the n-Si (1 0 0) substrates were polycrystalline. Transmission electron microscopy (TEM) images showed that bright-contrast regions existed in the grain boundary, and high-resolution TEM (HRTEM) images showed that the bright-contrast regions with an amorphous phase were embedded in the ZnO grains. While the surface roughness of the AZO film annealed at 800 °C became smoother, those of the AZO films annealed at 900 and 1000 °C became rougher. XRD patterns, TEM images, selected-area electron diffraction patterns, HRTEM images, and atomic force microscopy (AFM) images showed that the crystallinity in the AZO thin films grown on the n-Si (1 0 0) substrates was enhanced resulting from the release in the strain energy for the AZO thin films due to thermal annealing at 800 °C. XRD patterns and AFM images show that the crystallinity of the AZO thin films annealed at 1000 °C deteriorated due to the formation of the amorphous phase in the ZnO thin films.  相似文献   

2.
ZnO thin films were epitaxially grown on sapphire (0 0 0 1) substrates by radio frequency magnetron sputtering. ZnO thin films were then annealed at different temperatures in air and in various atmospheres at 800 °C, respectively. The effect of the annealing temperature and annealing atmosphere on the structure and optical properties of ZnO thin films are investigated by X-ray diffraction (XRD), atomic force microscopy (AFM), photoluminescence (PL). A strong (0 0 2) diffraction peak of all ZnO thin films shows a polycrystalline hexagonal wurtzite structure and high preferential c-axis orientation. XRD and AFM results reveal that the better structural quality, relatively smaller tensile stress, smooth, uniform of ZnO thin films were obtained when annealed at 800 °C in N2. Room temperature PL spectrum can be divided into the UV emission and the Visible broad band emission. The UV emission can be attributed to the near band edge emission (NBE) and the Visible broad band emission can be ascribed to the deep level emissions (DLE). By analyzing our experimental results, we recommend that the deep-level emission correspond to oxygen vacancy (VO) and interstitial oxygen (Oi). The biggest ratio of the PL intensity of UV emission to that of visible emission (INBE/IDLE) is observed from ZnO thin films annealed at 800 °C in N2. Therefore, we suggest that annealing temperature of 800 °C and annealing atmosphere of N2 are the most suitable annealing conditions for obtaining high quality ZnO thin films with good luminescence performance.  相似文献   

3.
ZnO thin films grown on Si(1 1 1) substrates by using atomic layer deposition (ALD) were annealed at the temperatures ranging from 300 to 500 °C. The X-ray diffraction (XRD) results show that the annealed ZnO thin films are highly (0 0 2)-oriented, indicating a well ordered microstructure. The film surface examined by the atomic force microscopy (AFM), however, indicated that the roughness increases with increasing annealing temperature. The photoluminescence (PL) spectrum showed that the intensity of UV emission was strongest for films annealed at 500 °C. The mechanical properties of the resultant ZnO thin films investigated by nanoindentation reveal that the hardness decreases from 9.2 GPa to 7.2 GPa for films annealed at 300 °C and 500 °C, respectively. On the other hand, the Young's modulus for the former is 168.6 GPa as compared to a value of 139.5 GPa for the latter. Moreover, the relationship between the hardness and film grain size appear to follow closely with the Hall-Petch equation.  相似文献   

4.
Nanocrystalline zinc oxide (ZnO) thin films have been deposited by spin-coating polymeric precursors synthesized by the citrate precursor route using ethylene glycol and citric acid as chelating agents. The ZnO thin films were annealed in air at different temperatures for 10 min. The films were characterized by different structural and optical techniques, including X-ray diffraction (XRD), atomic force microscopy (AFM), optical transmission spectroscopy, and photoluminescence (PL). The thermal decomposition of polymeric precursor was studied by thermogravimetric analysis (TGA). XRD analysis with grazing incidence and rocking curves indicate that the ZnO films are polycrystalline with preferential orientation along the c-axis direction with a full-width at half-maximum (FWHM) of 0.31° for 600 °C-annealed samples. On annealing, the texturing in films increased along with a decrease in FWHM. AFM micrographs illustrate that the ZnO films are crack-free with well-dispersed homogeneous and uniformly distributed spherical morphology. The synthesized ZnO thin films have transparency >85% in the visible region exhibiting band edge at 375 nm, which becomes sharper with anneal. Room temperature PL spectra of these films show strong ultraviolet (UV) emission around 392 nm with an increase in intensity with annealing temperature, attributed to grain growth. Deconvolution of the PL spectra reveals that there is coupling of free excitons with higher orders of longitudinal optical (LO) phonon replicas leading to a broad asymmetric near-band-edge peak.  相似文献   

5.
Zinc oxide (ZnO) thin films were deposited on microscope glass substrates by sol-gel spin coating method. Zinc acetate (ZnAc) dehydrate was used as the starting salt material source. A homogeneous and stable solution was prepared by dissolving ZnAc in the solution of monoethanolamine (MEA). ZnO thin films were obtained after preheating the spin coated thin films at 250 °C for 5 min after each coating. The films, after the deposition of the eighth layer, were annealed in air at temperatures of 300 °C, 400 °C and 500 °C for 1 h. The effect of thermal annealing in air on the physical properties of the sol-gel derived ZnO thin films are studied. The powder and its thin film were characterized by X-ray diffractometer (XRD) method. XRD analysis revealed that the annealed ZnO thin films consist of single phase ZnO with wurtzite structure (JCPDS 36-1451) and show the c-axis grain orientation. Increasing annealing temperature increased the c-axis orientation and the crystallite size of the film. The annealed films are highly transparent with average transmission exceeding 80% in the visible range (400-700 nm). The measured optical band gap values of the ZnO thin films were between 3.26 eV and 3.28 eV, which were in the range of band gap values of intrinsic ZnO (3.2-3.3 eV). SEM analysis of annealed thin films has shown a completely different surface morphology behavior.  相似文献   

6.
Zinc oxide thin films are deposited on Si and quartz substrates using the sol-gel method. The thin films, annealed at 400, 600 and 800 °C respectively, are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), ultraviolet-visible spectrophotometer (UV-Vis), fluorescence spectrometer (FL) and the photocatalytic activity is tested by the decomposition of methyl orange dye under UV illumination. The results show that the mean grain size, surface-to-volume ratio, rms roughness and degradation efficiency of the thin films increases with increasing annealing temperature. In particular, ZnO thin film annealed at 800 °C exhibits the highest photocatalytic activity, degrading methyl orange by almost 88% in 180 min. Photocatalytic reaction mechanism of the ZnO thin films is discussed in detail, and the oxygen defects are proposed to be the active sites of the ZnO photocatalyst.  相似文献   

7.
Electrodeposition technique was used in order to produce nanometric zinc oxide films on glass insulating substrates. The effect of electrolyte concentration and applied current density on the formation and growth of electrodeposited Zn thin films in aqueous solutions of ZnSO4 were studied. After a thermal oxidation, a characterization of the structural morphology of the films deposited was carried out by optical microscopy (OM), atomic force microscopy (AFM), scanning electron microscopy (SEM) and by grazing incidence X-rays diffraction (GIXD). These characterization techniques show that the grains size of the films after oxidation at temperature 450 °C is between 5 and 15 nm, as well as the structure is polycrystalline nature with several orientations. UV/vis spectrophotometry confirms that it is possible to obtain transparent good ZnO films with an average transmittance of approximately 80% within the visible wavelength region, as well as the optical gap of obtained ZnO films is 3.17 eV.  相似文献   

8.
Al-doped ZnO (ZnO:Al) thin films with different Al contents were deposited on Si substrates using the radio frequency reactive magnetron sputtering technique. X-ray diffraction (XRD) measurements showed that the crystallinity of the films was promoted by appropriate Al content (0.75 wt.%). Then the ZnO:Al film with Al content of 0.75 wt.% was annealed in vacuum at different temperatures. XRD patterns revealed that the residual compressive stress decreased at higher annealing temperatures. While the surface roughness of the ZnO:Al film annealed at 300 °C became smoother, those of the ZnO:Al films annealed at 600 and 750 °C became rougher. The photoluminescence (PL) measurements at room temperature revealed a violet, two blue and a green emission. The origin of these emissions was discussed and the mechanism of violet and blue emission of ZnO:Al thin films were suggested. We concluded that the defect centers are mainly ascribed to antisite oxygen and interstitial Zn in annealed (in vacuum) ZnO:Al films.  相似文献   

9.
The epitaxial growth of doped ZnO films is of great technological importance. Present paper reports a detailed investigation of Sc-doped ZnO films grown on (1 0 0) silicon p-type substrates. The films were deposited by sol-gel technique using zinc acetate dihydrate as precursor, 2-methoxyethanol as solvent and monoethanolamine (MEA) as a stabilizer. Scandium was introduced as dopant in the solution by taking 0.5 wt%1 of scandium nitrate hexahydrate. The effect of annealing on structural and photoluminescence properties of nano-textured Sc-doped films was investigated in the temperature range of 300-550 °C. Structural investigations were carried out using X-ray diffraction, scanning electron microscopy and atomic force microscopy. X-ray diffraction study revealed that highly c-axis oriented films with full-width half maximum of 0.21° are obtained at an annealing temperature of 400 °C. The SEM images of ZnO:Sc films have revealed that coalescence of ZnO grains occurs due to annealing. Ostwald ripening was found to be the dominant mass transport mechanism in the coalescence process. A surface roughness of 4.7 nm and packing density of 0.93 were observed for the films annealed at 400 °C. Room temperature photoluminescence (PL) measurements of ZnO:Sc films annealed at 400 °C showed ultraviolet peak at about (382 nm) with FWHM of 141 meV, which are comparable to those found in high-quality ZnO films. The films annealed below or above 400 °C exhibited green emission as well. The presence of green emission has been correlated with the structural changes due to annealing. Reflection high energy electron diffraction pattern confirmed the nearly epitaxial growth of the films.  相似文献   

10.
We have deposited a 12 nm thick Ge layer on Si(1 0 0) held at 200 °C by thermal evaporation under high vacuum conditions. Upon subsequent thermal annealing in vacuum, self-assembled growth of nanostructural Ge islands on the Ge layer occurred. Atomic force microscopy (AFM) and grazing incidence small-angle X-ray scattering (GISAXS) were used to characterize such layers. GISAXS measurements evidenced the formation of cylinder shaped structures upon annealing at 700 °C, which was confirmed by AFM measurements with a very sharp tip. A Ge mass transport from the layer to the islands was inferred by X-ray reflectivity and an activation energy of 0.40 ± 0.10 eV for such a process was calculated.  相似文献   

11.
Influence of annealing temperature on the properties of Sb-doped ZnO thin films were studied. Hall measurement results indicated that the Sb-doped ZnO annealed at 950 °C was p-type conductivity. X-ray diffraction (XRD) results indicated that the Sb-doped ZnO thin films prepared at the experiments are high c-axis oriented. It was worth noting that p-type sample had the worst crystallinity. The measurements of low-temperature photoluminescence (PL) spectra indicate that the sample annealed at the temperatures of 950 °C showed strong acceptor-bound exciton (A0X) emission, and confirmed that it is related to Sb-doping by comparing with the undoped ZnO low-temperature PL spectrum.  相似文献   

12.
Ge thin films with a thickness of about 110 nm have been deposited by electron beam evaporation of 99.999% pure Ge powder and annealed in air at 100-500 °C for 2 h. Their optical, electrical and structural properties were studied as a function of annealing temperature. The films are amorphous below an annealing temperature of 400 °C as confirmed by XRD, FESEM and AFM. The films annealed at 400 and 450 °C exhibit X-ray diffraction pattern of Ge with cubic-F structure. The Raman spectrum of the as-deposited film exhibits peak at 298 cm−1, which is left-shifted as compared to that for bulk Ge (i.e. 302 cm−1), indicating nanostructure and quantum confinement in the as-deposited film. The Raman peak shifts further towards lower wavenumbers with annealing temperature. Optical band gap energy of amorphous Ge films changes from 1.1 eV with a substantial increase to ∼1.35 eV on crystallization at 400 and 450 °C and with an abrupt rise to 4.14 eV due to oxidation. The oxidation of Ge has been confirmed by FTIR analysis. The quantum confinement effects cause tailoring of optical band gap energy of Ge thin films making them better absorber of photons for their applications in photo-detectors and solar cells. XRD, FESEM and AFM suggest that the deposited Ge films are composed of nanoparticles in the range of 8-20 nm. The initial surface RMS roughness measured with AFM is 9.56 nm which rises to 12.25 nm with the increase of annealing temperature in the amorphous phase, but reduces to 6.57 nm due to orderedness of the atoms at the surface when crystallization takes place. Electrical resistivity measured as a function of annealing temperature is found to reduce from 460 to 240 Ω-cm in the amorphous phase but drops suddenly to 250 Ω-cm with crystallization at 450 °C. The film shows a steep rise in resistivity to about 22.7 KΩ-cm at 500 °C due to oxidation. RMS roughness and resistivity show almost opposite trends with annealing in the amorphous phase.  相似文献   

13.
ZnO/Si thin films were prepared by rf magnetron sputtering method and some of the samples were treated by rapid thermal annealing (RTA) process at different temperatures ranging from 400 to 800 °C. The effects of RTA treatment on the structural properties were studied by using X-ray diffraction and atomic force microscopy while optical properties were studied by the photoluminescence measurements. It is observed that the ZnO film annealed at 600 °C reveals the strongest UV emission intensity and narrowest full width at half maximum among the temperature ranges studied. The enhanced UV emission from the film annealed at 600 °C is attributed to the improved crystalline quality of ZnO film due to the effective relaxation of residual compressive stress and achieving maximum grain size.  相似文献   

14.
0.7BiFeO3-0.3PbTiO3 (BFPT7030) thin films were deposited on SiO2/Si substrates by sol-gel process. The influence of heating rate on the crystalline properties of BFPT7030 thin films were studied by X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). XRD patterns of the films showed that a pure perovskite phase exists in BFPT7030 films annealed by rapid thermal annealing (RTA) technique. SEM and AFM observations demonstrated that the BFPT7030 films annealed by RTA at 700 °C for 90 s with the heating rate of 1 °C s−1 could show a dense, crack-free surface morphology, and the films’ grains grow better than those of the films annealed by RTA at the same temperature with other heating rates. XPS results of the films indicated that the ratio of Fe3+:Fe2+ is about 21:10 and 9:5 for the films annealed by RTA at 700 °C for 90 s with the heating rate of 1 and 20 °C s−1, respectively. That means the higher the heating rate, the higher the concentration of Fe2+ in the BFPT7030 thin films.  相似文献   

15.
Al-doped ZnO (AZO) and (Al, Na) co-doped ZnO (ANZO) thin films were prepared via sol-gel technique with an annealing process at temperatures between 450 and 550 °C for 60 min in air ambient, and their structural and optical properties have been investigated. The deposited films exhibited hexagonal zinc oxide structure except annealing at 450 °C. For the 500 °C-annealed samples, the surface morphology was analyzed via scanning electron microscopy, Photoluminescence (PL) of different Na content ANZO thin films showed that there were very obvious violet and blue emission bands between 400 and 500 nm, and intensity of which were enhanced with Na content increasing. Transparency of the films was improved along with increasing Na content. The result of UV indicated the absorb bands appeared obviously red shift with Na doping into ZnO, the optical gaps of all films far beyond 3.37 eV of pure ZnO, and gradually decreased with Na content increasing, this is very virtual for improving photoelectricity performance of transparent conduct oxide (TCO) film. The possible origins responsible for structure and optical properties also had been discussed.  相似文献   

16.
ZnO thin films with different thickness (the sputtering time of ZnO buffer layers was 10 min, 15 min, 20 min, and 25 min, respectively) were first prepared on Si substrates using radio frequency magnetron sputtering system and then the samples were annealed at 900 °C in oxygen ambient. Subsequently, a GaN epilayer about 500 nm thick was deposited on ZnO buffer layer. The GaN/ZnO films were annealed in NH3 ambient at 950 °C. X-ray diffraction (XRD), atom force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL) were used to analyze the structure, morphology, composition and optical properties of GaN films. The results show that their properties are investigated particularly as a function of the sputtering time of ZnO layers. For the better growth of GaN films, the optimal sputtering time is 15 min.  相似文献   

17.
We have prepared SrTiO3/BaTiO3 thin films with multilayered structures deposited on indium tin oxide (ITO) coated glass by a sol-gel deposition and heating at 300-650 °C. The optical properties were obtained by UV-vis spectroscopy. The films show a high transmittance (approximately 85%) in the visible region. The optical band gap of the films is tunable in the 3.64-4.19 eV range by varying the annealing temperature. An abrupt decrease towards the bulk band gap value is observed at annealing temperatures above 600 °C. The multilayered film annealed at 650 ° C exhibited the maximum refractive index of 2.09-1.91 in the 450-750 nm wavelength range. The XRD and AFM results indicate that the films annealed above 600 ° C are substantially more crystalline than the films prepared at lower temperatures which were used to change their optical band gap and complex refractive index to an extent that depended on the annealing temperature.  相似文献   

18.
In the present study, the structural, optical and antibacterial properties of ZnO thin films are reported. ZnO thin films are deposited on borosilicate glass substrates by radio frequency plasma enhanced chemical vapor deposition (PECVD) using oxygen as process gas. The crystallinity of the deposited films is improved upon annealing at 450 °C in air for 1.5 h and the polycrystalline nature of the films is further confirmed by selected area electron diffraction. The particle size of the annealed film (thickness 476 nm) is found to be ∼34 nm from the transmission electron microscopic observation. Energy dispersive X-ray spectrum indicates the stoichiometric deposition of ZnO films. The films are highly transparent (transmittance >85%) in the visible region of electromagnetic spectrum. The films exhibit excellent antibacterial effect towards the growth of Escherichia coli and Pseudomonas aeruginosa.  相似文献   

19.
Amorphous silicon (a-Si) and hydrogenated amorphous silicon (a-Si:H) films were deposited by DC magnetron sputtering technique with argon and hydrogen plasma mixture on Al deposited by thermal evaporation on glass substrates. The a-Si/Al and a-Si:H/Al thin films were annealed at different temperatures ranging from 250 to 550 °C during 4 h in vacuum-sealed bulb. The effects of annealing temperature on optical, structural and morphological properties of as-grown as well as the vacuum-annealed a-Si/Al and a-Si:H/Al thin films are presented in this contribution. The averaged transmittance of a-Si:H/Al film increases upon increasing the annealing temperature. XRD measurements clearly evidence that crystallization is initiated at 450 °C. The number and intensity of diffraction peaks appearing in the diffraction patterns are more important in a-Si:H/Al than that in a-Si/Al layers. Results show that a-Si:H films deposited on Al/glass crystallize above 450 °C and present better crystallization than the a-Si layers. The presence of hydrogen induces an improvement of structural properties of poly-Si prepared by aluminium-induced crystallization (AIC).  相似文献   

20.
ZnO/SiO2 thin films were fabricated on Si substrates by E-beam evaporation with thermal retardation. The as-prepared films were annealed for 2 h every 100 °C in the temperature range 400-800 °C under ambient air. The structural and optical properties were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM) and photoluminescence (PL). The XRD analysis indicated that all ZnO thin films had a highly preferred orientation with the c-axis perpendicular to the substrate. From AFM images (AFM scan size is 1 μm×1 μm), the RMS roughnesses of the films were 3.82, 5.18, 3.65, 3.40 and 13.2 nm, respectively. PL measurements indicated that UV luminescence at only 374 nm was observed for all samples. The optical quality of the ZnO film was increased by thermal retardation and by using an amorphous SiO2 buffer layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号