首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 545 毫秒
1.
A photoluminescence study of the blue-green emitting BaGa2S4:Eu2+ phosphor is reported. Diffuse reflectance, excitation and emission spectra were examined with the aim to enlarge the fundamental knowledge about the emission of the Eu2+ rare earth ion in this lattice. The thermal dependence of the radiative properties and the influence of the Eu2+ concentration were investigated. The Stokes shift, the crystal field splitting and the activation energy of the thermal quenching were determined. By combining these results with data available in literature, we discussed the radiative properties of the BaAl2S4:Eu2+ blue phosphor in relation with those determined in this study for the isostructural BaGa2S4:Eu2+ phosphor.  相似文献   

2.
Eu2+激活的Ca3SiO5绿色荧光粉的制备和发光特性研究   总被引:3,自引:0,他引:3       下载免费PDF全文
杨志平  刘玉峰 《物理学报》2006,55(9):4946-4950
研究了Eu2+激活的绿色发光材料Ca3SiO5的制备条件和发光性质. Eu2+中心形成主峰值为501 nm和次峰值为570 nm的特征宽带,两峰值叠加形成发射峰值为502nm的绿色发射光谱带. 利用这些光谱结果和Van Uitert 经验公式,确认Ca3SiO5:Eu2+中存在两种性质有差异的Eu2+发光中心,它们分别占据基质中八配位的Ca2+(Ⅰ)格位和四配位的Ca2+(Ⅱ)格位. 其激发光谱分布在250—450 nm的波长范围,峰值位于375 nm处,可以被InGaN管芯产生的350—410 nm辐射有效激发. 关键词: 发光 荧光粉 绿色荧光粉 3SiO5')" href="#">Ca3SiO5 2+')" href="#">Eu2+  相似文献   

3.
Zinc silicate phosphors co-doped with Eu3+ ions and also with both Eu3+ and Tb3+ ions were prepared by high temperature solid state reaction in air or reducing atmosphere. The luminescence characteristics of the prepared phosphors were investigated. While in the samples prepared in air, Eu3+ emission was found to be dominant over Tb3+ emission, in the samples prepared in reducing atmosphere, intense Eu2+ emission at 448 nm was found to be predominant over narrow Tb3+ emission. Luminescence studies showed that Eu3+ ions occupy asymmetric sites in Zn2SiO4 lattice. The intense f-f absorption peak of Eu3+ at 395 nm observed in these phosphors suggests their potential as red emitting phosphors for near ultra-violet light emitting diodes.  相似文献   

4.
A novel blue light emitting NaSr1 − xPO4:Eu2+x (x = 0.001 to 0.02) phosphors were prepared by solid-state reaction method to investigate its optical properties and thermal stability for its application in white light-emitting diodes (w-LEDs). The excitation and emission spectra of the prepared phosphor reveal a broad emission peak centered at 460 nm which arises due to 4f-5d transitions of Eu2+ upon the near ultra-violet (n-UV) excitation wavelength at 380 nm. The effect of Eu2+ doping concentration and sintering temperature on the emission intensity of NaSrPO4:Eu2+ was investigated along with its chromaticity coordinates. The temperature dependent luminescence properties of the prepared phosphor show better results than that of the commercial YAG:Ce3+phosphor. Besides, their XRD, FT-IR, SEM, TG, and DTA profiles have also been analyzed to explore its structural details.  相似文献   

5.
Using urea as fuel and boric as flux, a novel bluish green emitting phosphor Li2(Ba0.99,Eu0.01)SiO4:B3+ has been successfully synthesized using a combustion method. The material has potential application as the fluorescent material for ultraviolet light-emitting diodes (UV-LEDs). The dependence of the properties of Li2(Ba0.99,Eu0.01)SiO4:B3+ phosphors upon urea concentration, boric acid doping and initiating combustion temperature were investigated. The crystallization and particle sizes of Li2(Ba0.99,Eu0.01)SiO4:B3+ have been investigated by using powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). Luminescence measurements showed that the phosphors can be efficiently excited by ultraviolet (UV) to visible region, emitting a bluish green light with peak wavelength of 490 nm. The results showed that the boric acid was effective in improving the luminescence intensity of Li2(Ba0.99,Eu0.01)SiO4 and the optimum molar ratio of boric acid to barium nitrate was about 0.06. The optimized phosphors Li2(Ba0.99,Eu0.01)SiO4:B0.063+ showed 160% improved emission intensity compared with that of the Li2(Ba0.99,Eu0.01)SiO4 phosphors under UV (λex=350 nm) excitation.  相似文献   

6.
纳米棒状GdPO4:Eu3+荧光粉的合成及其发光性能的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
采用溶解热法合成出了纳米棒状GdPO4:Eu3+荧光粉,其中不同磷源和pH值对最终产物的形成起着关键的作用. 将纳米棒状和块体GdPO4:Eu3+荧光粉的发光性能进行了对比,其中与块体GdPO4:Eu3+荧光粉相比,纳米棒状GdPO4:Eu3+荧光粉的色纯度得到了改善,而在激发光谱中,纳米棒状GdPO4:Eu< 关键词: 纳米棒 磷酸钆 发光性能  相似文献   

7.
Eu2+ and Mn2+ co-doped Ca8Zn(SiO4)4Cl2 phosphors have been synthesized by a high temperature solid state reaction. Energy transfer from Eu2+ to Mn2+ is observed. The emission spectra of the phosphors show a green band at 505 nm of Eu2+ and a yellow band at 550 nm of Mn2+. The excitation spectra corresponding to 4f7-4f65d transition of Eu2+ cover the spectral range of 370-470 nm, well matching UV and/or blue LEDs. The shortening of fluorescent lifetimes of Eu2+ followed by simultaneous increase of fluorescent intensity of Mn2+ with increasing Mn2+ concentrations is studied based on energy transfer. Upon blue light excitation the present phosphor can emit intense green/yellow in comparison with other chlorosilicate phosphors such as Eu2+ and Mn2+ co-doped Ca8Mg(SiO4)4Cl2 and Ca3SiO4Cl2, demonstrating a potential application in phosphor converted white LEDs.  相似文献   

8.
Eu2+ activated Ca5(PO4)3Cl blue-emitting phosphors were prepared by the conventional solid state method using CaCl2 as the chlorine source and H3BO3 as flux. The structure and luminescent properties of phosphors depend on the concentrations of Eu2+, the amount of CaCl2 and the usage of the H3BO3 flux were investigated systematically. Eu2+ and Mn2+ Co-doped Ca5(PO4)3Cl with blue and orange double-band emissions were also researched based on the optimal composition and synthesis conditions. The energy transfer between Eu2+ and Mn2+ was found in the phosphor Ca5(PO4)3Cl:Eu2+, Mn2+, and the Co-doped phosphor can be efficiently excited by near-UV light, indicating that the phoshor is a potentional candidate for n-UV LED used phosphor.  相似文献   

9.
用微波辅助水热-煅烧法成功合成了花状NaY(MoO4)2颗粒,用XRD、XPS、FESEM进行了表征,提出了花状NaY(MoO4)2颗粒可能的形成机理. 采用相同的方法合成了NaY(MoO4)2:Eu3+荧光体,该荧光材料在612 nm处有一个强的发射峰,可用作白色发光二极管的红色磷光剂. 此外,微波辅助水热-煅烧法可能发展成为制备其他花状稀土钼酸盐的有效途径.  相似文献   

10.
CaZrSi2O7 (CZS), a modification of the thortveitite family, was prepared as a polycrystalline powder material by the conventional solid-state reaction method. Structural, thermal and photoluminescence (PL) properties of the prepared material were investigated in order to evaluate its potentiality. XRD patterns confirm the monoclinic phase of CaZrSi2O7: Eu2+ phosphors.. Emissions arising from transitions between the 5d and 4f orbital gaps of Eu2+ are manifested in the broadband excitation and emission spectra with major peaks at 363 and 512 nm, respectively. The excitation wavelength matches well with that of the emission of the ultraviolet-light emitting diode (UV-LED). Concentration quenching occurs when the Eu2+ concentration is beyond 0.05 and the dipole-dipole interaction was the reason for the corresponding quenching mechanism. The temperature dependence of emission intensity of CZS: Eu2+ phosphor was investigated and it showed better thermal stability than the standard YAG: Ce3+ phosphor.  相似文献   

11.
A blue emitting phosphor of the triclinic BaCa2Si3O9:Eu2+ was prepared by the combustion-assisted synthesis method and an efficient blue emission ranging from the ultraviolet to visible was observed. The luminescence and crystallinity were investigated using luminescence spectrometry and X-ray diffractometry (XRD), respectively. The emission spectrum shows a single intensive band centered at 445 nm, which corresponds to the 4f65d1→4f7 transition of Eu2+. The excitation spectrum is a broad extending from 260 to 450 nm, which matches the emission of ultraviolet light-emitting diodes (UV-LEDs). The critical quenching concentration of Eu2+ in BaCa2Si3O9:Eu2+ phosphor is about 0.05 mol. The corresponding concentration quenching mechanism is verified to be a dipole-dipole interaction. The CIE of the optimized sample Ba0.95Ca2Si3O9:Eu0.052+ was (x, y)=(0.164, 0.111). The result indicates that BaCa2Si3O9:Eu2+ can be potentially useful as a UV radiation-converting phosphor for white light-emitting diodes (LEDs).  相似文献   

12.
采用高温固相法制备了LiBaBO3:Eu2+绿色发光材料.测量了Eu2+浓度为1mol%时样品的激发与发射光谱,其发射光谱为双峰宽谱,主峰分别为482和507nm,与理论计算值符合很好;监测482nm发射峰时,对应激发光谱的峰值为287和365nm,监测507nm发射峰时,对应的激发峰为365和405nm.研究了Eu2+浓度对材料发射光谱的影响,结果显示,随Eu2+浓度的增大,蓝、绿发射峰均发生了  相似文献   

13.
Sodium europium double tungstate [NaEu(WO4)2] phosphor was prepared by the solid-state reaction method. Its crystal structure, photoluminescence properties and thermal quenching characteristics were investigated aiming at the potential application in the field of white light-emitting diodes (LEDs). The influences of Sm doping on the photoluminescence properties of this phosphor were also studied. It is found that this phosphor can be effectively excited by 394 or 464 nm light, which nicely match the output wavelengths of near-ultraviolet (UV) or blue LED chips. Under 394 or 464 nm light excitation, this phosphor exhibits stronger emission intensity than the Y2O2S:Eu3+ or Eu2+-activated sulfide phosphor. The introduction of Sm3+ ions can broaden the excitation peaks at 394 and 464 nm of the NaEu(WO4)2 phosphor and significantly enhance its relative luminance under 400 and 460 nm LEDs excitation. Furthermore, the relative luminance of NaEu(WO4)2 phosphor shows a superior thermal stability compared with the commercially used sulfide or oxysulfide phosphor, and make it a promising red phosphor for solid-state lighting devices based on near-UV or blue LED chips.  相似文献   

14.
Eu3+-doped LiGd(MoO4)2 red phosphor was synthesized by solid-state reaction, and its photoluminescent properties were measured. The effect of Eu3+ doping concentration on PL intensity was investigated, and the optimum concentration of Eu3+ doped in LiGd(MoO4)2 was found to be 30 mol%. Compared with Y2O2S:0.05Eu3+, Na0.5Gd0.5MoO4:Eu3+ and KGd(MoO4)2:Eu3+, the LiGd(MoO4)2:Eu3+ phosphor showed a stronger excitation band around 395 nm and a higher intensity red emission of Eu3+ under 395 nm light excitation. For the first time, intensive red light-emitting diodes (LEDs) were fabricated by combining phosphor and a 395 nm InGaN chip, confirming that the LiGd(MoO4)2:Eu3+ phosphor is a good candidate for LED applications.  相似文献   

15.
Y2O3:Eu3+ phosphor is a very attractive material for use as a red phosphor in many fields. SrAl2O4:Eu2+ belongs to long lasting phosphor (LLP) and it is a useful bluish-green luminescence material, which can also be a promising candidate as a simple and easy-to-use radiation detection element for visual display of two dimensional radiation distributions. In the present study, both these two kinds of phosphors were synthesized using high temperature solid state reactions. In our work, the influence of gamma-ray irradiation on the properties of these two kinds of phosphors was studied by comparing photoluminescence, brightness and the decay curve of unirradiated and gamma-ray-irradiated samples. Conclusions from the present work can be briefly summarized as follows. In irradiated samples, the brightness is decreased without sensible change in the wavelength distribution of the luminescence spectrum and in the decay kinetic upon gamma exposure. Moreover, the emission due to Eu3+→Eu2+ conversion in Y2O3:Eu3+ phosphors was not observed in our sample after irradiation to high exposure. Also the brightness of SrAl2O4:Eu2+ phosphor turned out to decrease after the exposition to ionizing radiation while the luminescence wavelength distribution remained unchanged. The reason for the effect of gamma-ray irradiation on the properties of phosphors is also discussed in the paper.  相似文献   

16.
Intense red emitting phosphors MGd2(MoO4)4: Eu3+ (M=Ca, Sr and Ba) have been synthesized by the simple sol-gel technique. The formation processes and the phase impurity of phosphors are characterized by thermogravimetry-differential thermal analysis (TG-DTA) and power X-ray diffraction (XRD). The narrower size distribution and the regular shape of the phosphor particles are also measured by Field emission scanning electronic microscopy (FE-SEM). Photo-luminescent properties of the phosphors are performed at room temperature. Their excitation spectra present strong absorption at 395 nm near-UV light and 465 nm blue light, which match well with commercial LED chips. The phosphors exhibit satisfactory and excellent red light dominated by 616 nm and their photoluminescence intensity is about 3-4 times stronger than that of phosphor YAG under the 465 nm excitation. In addition, the optimal concentrations of Eu3+ for phosphors MGd2(MoO4)4 (M=Ca, Sr and Ba) have also been determined.  相似文献   

17.
This study evaluated potential applications of green to yellow-emitting phosphors (Sr1−xSi2O2N2: Eu2+x) in blue pumped white light emitting diodes. Sr1-xSi2O2N2: Eu2+x was synthesized at different Eu2+ doping concentrations at 1450 °C for 5 h under a reducing nitrogen atmosphere containing 5% H2 using a conventional solid reaction method. The X-ray diffraction patterns of the prepared phosphor (Sr1-xSi2O2N2: Eu2+x) were indexed to the SrSi2O2N2 phase and an unknown intermediate phase. The photoluminescence properties of these phosphors (Sr1−xSi2O2N2: Eu2+x) showed that the samples were excited from the UV to visible region due to the strong crystal field splitting of the Eu2+ ion. The emission spectra under excitation of 450 nm showed a bright color at 545-561 nm. The emission intensity increased gradually with increasing Eu2+ doping concentration ratio from 0.05 to 0.15. However, the emission intensity decreased suddenly when the Eu2+ concentration ratio was >0.2. As the doping concentration of Eu2+ was increased, there was a red shift in the continuous emission peak. These results suggest that Sr1-xSi2O2N2: Eu2+x phosphor can be used in blue-pumped white light emitting diodes.  相似文献   

18.
用高温固相法合成了Eu2+,Mn2+共激活的Ca2SiO3Cl2高亮度白色发光材料,并对其发光性质进行了研究. 该荧光粉在近紫外光激发下发出强的白色荧光,Eu2+中心形成峰值为419 nm和498 nm的特征宽带,通过Eu2+中心向Mn2+中心的能量传递导致了峰值为578 nm的发射,三个谱带叠加从而在单一基质中得到了白光. 激发光谱均分布在250—415 nm的波长范围,红绿蓝三个发射带的激发谱峰值分别位于385 nm,412 nm,370 nm和396 nm处,可以被InGaN管芯产生的紫外辐射有效激发. Ca2SiO3Cl2:Eu2+,Mn2+是一种很有前途的单一基质白光LED荧光粉.  相似文献   

19.
<正>This paper investigates the luminescence characteristics of Eu2+ activated Ca2SiO4,Sr2SiO4 and Ba2SiO4 phosphors. Two emission bands are assigned to the f-d transitions of Eu2+ ions doped into two different cation sites in host lattices,and show different emission colour variation caused by substituting M2+ cations for smaller cations.This behaviour is discussed in terms of two competing factors of the crystal field strength and covalence.These phosphors with maximum excitation of around 370 nm can be applied as a colour-tunable phosphor for light-emitting diodes(LEDs) based on ultraviolet chip/phosphor technology.  相似文献   

20.
Green phosphor compositions MgxSr1−xAl2O4:Eu, Nd (with x=0.05-0.25) were prepared by solid state reaction method. The effect of Mg substitution on photoluminescence characteristics was investigated. The photoluminescence show intense green emission for MgSrAl2O4:Eu2+, Nd3+ with long persistence. This green emission corresponds to transitions from 4f65d1 to 4f7 of Eu2+ ion. Comparative analysis of the excitation and emission spectra were used to evaluate the crystal field splitting of the 5d states of Eu2+ and the parameters of electron-vibrational interaction, such as Huang-Rhys factor, effective phonon energy, and zero-phonon line position.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号