首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The anodization of ZK60 magnesium alloy in an alkaline electrolyte of 100 g/l NaOH + 20 g/l Na2B4O7·10H2O + 50 g/l C6H5Na3O7·2H2O + 60g/l Na2SiO3·9H2O was studied in this paper. The corrosion resistance of the anodic films was studied by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques and the microstructure and composition of films were examined by SEM and XRD. The influence of anodizing time was studied and the results show that the anodizing time of 60 min is suitable for acquiring films with good corrosion resistance. The influence of current density on the corrosion resistance of anodizing films was also studied and the results show that the film anodized at 20 mA/cm2 has the optimum corrosion resistance. The film formed by anodizing in the alkaline solution with optimized parameters show superior corrosion resistance than that formed by the traditional HAE process. The XRD pattern shows that the components of the anodized film consist of MgO and Mg2SiO4.  相似文献   

2.
A kind of environmentally friendly anodizing route for magnesium alloys, based on a new kind of organic additive (AA) contained traditional alkaline borate solution and 50 Hz civil ac current, has been studied. It is found that the formation of the anodic films is always coupled with the additive depended sparking and oxygen evolution, and the optimized ivory-white smooth anodic film possesses high corrosion resistance and excellent binding strength to AZ31 substrate. Meanwhile, The results also show that the structure, the corrosion resistance and the morphology of the anodic films are mainly dependent on the anodizing voltage, time and additives.  相似文献   

3.
The effect of zinc immersion and the role of fluoride in nickel plating bath were mainly investigated in nickel electroplating on magnesium alloy AZ91D. The state of zinc immersion, the composition of zinc film and the role of fluoride in nickel plating bath were explored from the curves of open circuit potential (OCP) and potentiodynamic polarization, the images of scanning electron microscopy (SEM) and the patterns of energy dispersive X-ray (EDX). Results show that the optimum zinc film mixing small amount of Mg(OH)2 and MgF2 is obtained by zinc immersion for 30-90 s. The corrosion potential of magnesium alloy substrate attached zinc film will be increased in nickel plating bath and the quantity of MgF2 sandwiched between magnesium alloy substrate and nickel coating will be reduced, which contributed to produce nickel coating with good performance. Fluoride in nickel plating bath serves as an activator of nickel anodic dissolution and corrosion inhibitor of magnesium alloy substrate. 1.0-1.5 mol dm−3 of F is the optimum concentration range for dissolving nickel anode and protecting magnesium alloy substrate from over-corrosion in nickel plating bath. The nickel coating with good adhesion and high corrosion resistance on magnesium alloy AZ91D is obtained by the developed process of nickel electroplating. This nickel layer can be used as the rendering coating for further plating on magnesium alloys.  相似文献   

4.
In this paper, a new composite coating was fabricated on magnesium alloy by a two-step approach, to improve the corrosion resistance and biocompatibility of Mg-Zn-Y-Nd alloy. First, fluoride conversion layer was synthesized on magnesium alloy surface by immersion treatment in hydrofluoric acid and then, Ti-O film was deposited on the preceding fluoride layer by magnetron sputtering. FE-SEM images revealed a smooth and uniform surface consisting of aggregated nano-particles with average size of 100 nm, and a total coating thickness of ∼1.5 μm, including an outer Ti-O film of ∼250 nm. The surface EDS and XRD data indicated that the composite coating was mainly composed of crystalline magnesium fluoride (MgF2), and non-crystalline Ti-O. Potentiodynamic polarization tests revealed that the composite coated sample have a corrosion potential (Ecorr) of −1.60 V and a corrosion current density (Icorr) of 0.17 μA/cm2, which improved by 100 mV and reduced by two orders of magnitude, compared with the sample only coated by Ti-O. EIS results showed a polarization resistance of 3.98 kΩ cm2 for the Ti-O coated sample and 0.42 kΩ cm2 for the composite coated sample, giving an improvement of about 100 times. After 72 h immersion in SBF, widespread damage and deep corrosion holes were observed on the Ti-O coated sample surface, while the integrity of composite coating remained well after 7 d. In brief, the data suggested that single Ti-O film on degradable magnesium alloys was apt to become failure prematurely in corrosion environment. Ti-O film deposited on fluoride-treated magnesium alloys might potentially meet the requirements for future clinical magnesium alloy stent application.  相似文献   

5.
Nanoporous niobium oxide films with microcone-type surface morphology were formed by anodizing at 10 V in glycerol electrolyte containing 0.6 mol dm−3 K2HPO4 and 0.2 mol dm−3 K3PO4 in a temperature range of 428-453 K. The microcones appeared after prolonged anodizing, but the required time was largely reduced by increasing electrolyte temperature. The anodic oxide was initially amorphous at all temperatures, but crystalline oxide nucleated during anodizing. The anodic oxide microcones, which were crystalline, appeared on surface as a consequence of preferential chemical dissolution of initially formed amorphous oxide. The chemical dissolution of an initially formed amorphous layer was accelerated by increasing the electrolyte temperature, with negligible influence of the temperature on the morphology of microcones up to 448 K.  相似文献   

6.
The effects of Cl, NO3 and SO42− aggressive anions on the corrosion and passivation behavior of carbon steel electrode in deaerated 0.50 M NaHCO3 solutions were studied using potentiodynamic anodic polarization and SEM techniques. It was found that the presence of Cl, NO3 and SO42− anions stimulates the anodic dissolution rate in both the active and the pre-passive potential regions. Moreover, significantly great effects were observed in both the passive and the trans-passive potential regions. Pitting corrosion was observed only in the presence of Cl anions, while the presence of NO3 and SO42− anions facilitate only passivation by oxygen of water without themselves participating in the cathodic process. Also, it was observed that the effect of NO3 anion, which is a strong oxidizing agent acting “primarily” as stimulator of the cathodic process and then its reaction product acts “indirectly” retarding the anodic process. On the other hand, the effect of SO42− anion, which is a non-oxidizing agent, exerts an “indirect” effect on the cathodic reaction increasing its rate and then “directly” influence on the anodic reaction, retarding it.  相似文献   

7.
Microarc oxidation coatings on AM60B magnesium alloy were prepared in silicate and phosphate electrolytes. Structure, composition, mechanical property, tribological, and corrosion resistant characteristics of the coatings was studied by scanning electron microscope (SEM), X-ray diffraction (XRD) and microhardness analyses, and by ball-on-disc friction and potentiodynamic corrosion testing. It is found that the coating produced from the silicate electrolyte is compact and uniform and is mainly composed of MgO and forsterite Mg2SiO4 phases, while the one formed in phosphate electrolyte is relatively porous and is mainly composed of MgO phase. The thick coating produced from a silicate electrolyte possesses a high hardness and provides a low wear rate (3.55 × 10−5 mm3/Nm) but a high friction coefficient against Si3N4 ball. A relatively low hardness and friction coefficient while a high wear rate (8.65 × 10−5 mm3/Nm) is recorded during the testing of the thick coating produced from a phosphate electrolyte. Both of these types of coatings provide effective protection for the corrosion resistance compared with the uncoated magnesium alloy. The coating prepared from the silicate electrolyte demonstrates better corrosion behavior due to the compacter microstructure.  相似文献   

8.
Anodic films have been prepared on the AZ91D magnesium alloys in 1 mol/L Na2SiO3 with 10 vol.% silica sol addition under the constant voltage of 60 V at room temperature by half-wave and full-wave power sources. The weight of the anodic films has been scaled by analytical balance, and the thickness has been measured by eddy current instrument. The surface morphologies, chemical composition and structure of the anodic films have been characterized by scanning electron microscopy (SEM), energy dispersion spectrometry (EDS), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that the thickness and weight of the anodic films formed by the two power sources both increase with the anodizing time, and the films anodized by full-wave power source grow faster than that by half-wave one. Furthermore, we have fitted polynomial to the scattered data of the weight and thickness in a least-squares sense with MATLAB, which could express the growth process of the anodic films sufficiently. The full-wave power source is inclined to accelerate the growth of the anodic films, and the half-wave one is mainly contributed to the uniformity and fineness of the films. The anodic film consists of crystalline Mg2SiO4 and amorphous SiO2.  相似文献   

9.
A simple approach for the growth of long-range highly ordered nanoporous anodic alumina film in H2SO4 electrolyte through a single step anodization without any additional pre-anodizing procedure is reported. Free-standing porous anodic alumina film of 180 μm thickness with through hole morphology was obtained. A simple and single step process was used for the detachment of alumina from aluminum substrate. The effect of anodizing conditions, such as anodizing voltage and time on the pore diameter and pore ordering is discussed. The metal/oxide and oxide/electrolyte interfaces were examined by high resolution scanning transmission electron microscope. The arrangement of pores on metal/oxide interface was well ordered with smaller diameters than that of the oxide/electrolyte interface. The inter-pore distance was larger in metal/oxide interface as compared to the oxide/electrolyte interface. The size of the ordered domain was found to depend strongly upon anodizing voltage and time.  相似文献   

10.
The influence of silver addition in the range 0.01-0.09 wt.% on the anodic corrosion and gas evolution of Pb-Sb-As-Se alloy in 1.28 sp.gr. H2SO4 solution at 25 °C was studied using linear sweep voltammetry, cyclic voltammetry, weight loss measurements and scanning electron microscopy. The results drawn from different techniques are comparable. The effect of different concentration of silver on the corrosion behavior of Pb-Sb-As-Se was investigated. The experimental results show that the silver added to Pb-Sb-As-Se alloy inhibits the growth of anodic corrosion layer. A decrease in the oxygen evolution overpotential and an increase in the hydrogen evolution overpotential with the addition of Ag were also observed during the experiments. Cyclic voltammetric measurements provided information on the effect of Ag on the oxidation of PbSO4 to PbO2.  相似文献   

11.
Preparation of anti-corrosion films by microarc oxidation on an Al-Si alloy   总被引:3,自引:0,他引:3  
Thick ceramic films over 140 μm were prepared on Al-7% Si alloy by ac microarc oxidation in a silicate electrolyte. The film growth kinetics was determined by an eddy current technique and film growth features in different stages were discussed. The microstructure and composition profiles for different thick films were analyzed by scanning electron microscopy and energy dispersive X-ray spectroscopy. Their phase components were determined by X-ray diffraction. The electrochemical corrosion behaviors of bare and coated alloys were evaluated using potentiodynamic polarization curves, and their corrosion morphologies were observed. In the initial stage of oxidation, the growth rate is slow with 0.48 μm/min due to the effect of Si element though the current density is rather high up to 33 A/dm2. After the current density has decreased to a stable value of 11 A/dm2, the film mainly grows towards the interior of alloy. The film with a three-layer structure consists of mullite, γ-Al2O3, α-Al2O3 and amorphous phases. By microarc discharge treatment, the corrosion current of the Al-Si alloy in NaCl solution was significantly reduced. However, a thicker film has to be fabricated in order to obtain high corrosion-resistant film of the Al-Si alloy. Microarc oxidation is an effective method to form an anti-corrosion protective film on Si-containing aluminum alloys.  相似文献   

12.
X-ray photoelectron spectroscopy (XPS) was used in order to investigate the correlation between the surface chemistry and the atmospheric corrosion of AZ31, AZ80 and AZ91D magnesium alloys exposed to 98% relative humidity at 50 °C. Commercially pure magnesium, used as the reference material, revealed MgO, Mg(OH)2 and tracers of magnesium carbonate in the air-formed film. For the AZ80 and AZ91D alloys, the amount of magnesium carbonate formed on the surface reached similar values to those of MgO and Mg(OH)2. A linear relation between the amount of magnesium carbonate formed on the surface and the subsequent corrosion behaviour in the humid environment was found. The AZ80 alloy revealed the highest amount of magnesium carbonate in the air-formed film and the highest atmospheric corrosion resistance, even higher than the AZ91D alloy, indicating that aluminium distribution in the alloy microstructure influenced the amount of magnesium carbonate formed.  相似文献   

13.
We report on the composition and morphology of as-grown anodic oxide films onto the iron surface in an ethylene glycol solution containing some NH4F and H2O by anodizing under direct current bias. Decrease in the content of NH4F and the temperature of electrolyte allow us to form either nanochannel or nanotubular films over a larger potential window, ca. from 30 to 100 V. By this way, the films in thickness of up to10 μm have been formed. Mössbauer spectra recorded at room to cryogenic temperatures under conversion electron and transmission modes revealed the formation of lepidocrocite (γ-FeOOH) film containing some Fe(OH)2 and/or FeF2·4H2O. An increase in anodizing voltage results in fabrication of more porous and less Fe(II) compounds containing films.  相似文献   

14.
S. Pronkin 《Surface science》2004,573(1):109-127
Quasi-single crystalline gold films of 20 nm thickness and preferential (1 1 1) orientation on Si hemispheres were modified by controlled potentiostatic deposition of Pd (sub-ML, ML, multi-L) from sulphate and/or chloride-containing electrolyte. The electrochemical properties of these model electrodes were characterised for hydrogen and (hydrogen-) sulphate adsorption as well as for surface oxide formation by cyclic voltammetry. Conditions were developed to fabricate defined and stable Pd monolayers. In situ ATR-SEIRAS (Attenuated Total Reflection Surface Enhanced Infrared Reflection Absorption Spectroscopy) experiments were carried out to describe the electrochemical double layer of Pd modified gold film electrodes in contact with aqueous 0.1 M H2SO4 with focus on interfacial water and anion adsorption. Based on an analysis of the non-resonant IR background signal the potential of zero charge is estimated to 0.10-0.20 V (vs. RHE). CO was found to be weakly physisorbed in atop sites on Au(1 1 1-20 nm)/0.1 M H2SO4 only in CO saturated electrolyte. CO, deposited on a quasi-single crystal gold film modified with 1 ML Pd, is chemisorbed with preferential occupation of bridge sites and atop positions at step edges. Saturated CO adlayers, as obtained by deposition at 0.10 V, contain isolated water species and are covered by a second layer of hydrogen bonded water. Potentiodynamic SEIRAS experiments of CO electro-oxidation on Pd-modified gold film electrodes demonstrate clearly the existence of a “pre-oxidation” region. They also provide spectroscopic evidence that isolated water and weakly hydrogen bonded water are consumed during the reaction and that atop CO on defect sites is a preferential reactant. The simultaneous in situ monitoring of the potential- and time-dependent evolution of characteristic vibrational modes in the OH- and CO-stretching regions are in agreement with the Gilman (“reactant pair”) mechanism of CO oxidation.  相似文献   

15.
The growth of porous oxide films on aluminum (99.99% purity), formed in 4% phosphoric acid was studied as a function of the anodizing voltage (23-53 V) using a re-anodizing technique and transmission electron microscopy (TEM) study. The chemical dissolution behavior of freshly anodized and annealed at 200 °C porous alumina films was studied. The obtained results indicate that porous alumina has n-type semiconductive behavior during anodizing in 4% phosphoric acid. During anodising, up to 39 V in the barrier layer of porous films, one obtains an accumulation layer (the thickness does not exceed 1 nm) where the excess electrons have been injected into the solid producing a downward bending of the conductive and valence band towards the interface. The charge on the surface of anodic oxide is negative and decreases with growing anodizing voltage. At the anodizing voltage of about 39 V, the charge on the surface of anodic oxide equals to zero. Above 39 V, anodic alumina/electrolyte junction injects protons from the electrolyte. These immobile positive charges in the surface layer of oxide together with an ionic layer of hydroxyl ions concentrated near the interface create a field, which produces an upward bending of the bands.  相似文献   

16.
In this paper, we investigated the electrochemical and surface behavior of hydroxyapatite (HA)/Ti films on the nanotubular Ti-35Nb-xZr alloy. The Ti-35Nb-xZr ternary alloys with 3-10 wt.% Zr content were made by an arc melting method. The nanotubular oxide layers were developed on the Ti-35Nb-xZr alloys by an anodic oxidation method in 1 M H3PO4 electrolyte containing 0.8 wt% NaF at room temperature. The HA/Ti composite films on the nanotubular oxide surfaces were deposited by a magnetron sputtering method. Their surface characteristics were analyzed by field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS) and an X-ray diffractometer (XRD). The corrosion behavior of the specimens was examined through potentiodynamic and AC impedance tests in 0.9% NaCl solution. From the results, the Ti-35Nb-xZr alloys showed a solely β phase microstructure that resulted from the addition of Zr. The nanotubular structure formed with a diameter of about 200 nm, and the HA/Ti thin film was deposited on the nanotubular structure. The HA/Ti thin film-coated nanotubular Ti-35Nb-xZr alloys showed good corrosion resistance in 0.9% NaCl solution.  相似文献   

17.
Magnesium-based biomaterials have been proposed as potential candidates for biodegradable implant materials, such as bone screws, bone plates, intraluminal stents and so on. However, the poor corrosion resistance inhibits their applications in surgery. They collapse before the injured tissues are healed. In this paper, Mg(OH)2 nonstructural film was synthesized on the substrate of AZ31 magnesium alloy by hydrothermal method with NaOH solution as mineralizer to reduce the corrosion rate of magnesium-based materials. The obtained films were characterized by XRD, SEM, and XPS. The results showed that a Mg(OH)2 film with nanostructure surface can be synthesized by hydrothermal method. It was observed that the thickness of film increased with the holding time. Corrosion rates of the films were studied by immersing the samples in Hank's solution (37 °C). Surface deposits of samples with films soaked in Hank's solution for 31 days were investigated by XRD, SEM, EDS, XPS, and FTIR. It verified that the corrosion rate of the magnesium alloy with grown film was slowed down in the Hank's solution and the behavior of corrosion was inhibited effectively. Amorphous calcium apatite precursor was observed to deposit on the surface of the film during corrosion experiments in Hank's solution. And the tape test revealed a strong adhesion between the film and the substrate.  相似文献   

18.
In the present study, porous Nb-Si alloy films with isolated nano-column morphology have been successfully developed by oblique angle magnetron sputtering on to aluminum substrate with concave cell structure. The deposited films are amorphous with the 15 at% silicon supersaturated into niobium. The porous Nb-15 at% Si films, as well as niobium films with similar morphology, are anodized at several voltages up to 50 V in 0.1 mol dm−3 ammonium pentaborate electrolyte. Due to the presence of sufficient gaps between neighboring columns, the gaps are not filled with anodic oxide, despite the large Pilling-Bedworth ratio (for instance, 2.6 for Nb/Nb2O5) and hence, a linear correlation between the reciprocal of capacitance and formation voltage is obtained for the Nb-15 at% Si. From the comparison with the anodic films formed on porous niobium films, it has been found that silicon addition improves the thermal stability of anodic niobium oxide; the change in capacitance and increase in leakage current become small for the Nb-Si. The findings indicate the potential of oblique angle deposition to tailor porous non-equilibrium niobium alloy films for high performance niobium-base capacitor.  相似文献   

19.
Adsorption probability measurements (molecular beam scattering) have been conducted to examine the adsorption dynamics (i.e. the gas-surface energy transfer processes) of CO2 adsorption on the Zn-on-Cu(1 1 0) bimetallic system. The results indicate surface alloy formation, which is in agreement with prior studies. Depositing Zn at 300 K on Cu(1 1 0), above the condensation temperature of CO2, leads to a “blocking” of CO2 adsorption sites by Zn which is incorporated in the Cu(1 1 0) surface. This apparent site blocking effect indicates a lowering of the CO2 binding energy on the alloyed surface as compared with the clean Cu(1 1 0) support. The Zn coverage has been calibrated by Auger electron spectroscopy and thermal desorption spectroscopy.  相似文献   

20.
Anodic layer growth on 2024 aluminium alloy at 70 °C, under 40 V, during 60 min, in 50 g L−1 di-sodium tetraborate solution containing di-sodium molybdate from 0.1 to 0.5 M (pH 10) is examined. Anodising behaviours strongly depend on additive concentration. Development of anodic films is favoured with weak molybdate additions (<0.3-0.4 M). The film thicknesses increase and the porosity of anodic layers decreases. Molybdenum (+VI), detected by X-ray photoelectron spectroscopy (XPS) analysis, is present in the anodic films and the Mo incorporation, studied by energy dispersive spectroscopy (EDS) analysis, increases with molybdate concentration. However, for high molybdate concentrations (>0.4 M), anodising behaviour becomes complex with the formation of a blue molybdenum oxide at the cathode. The growth of aluminium oxide is hindered. As the anodic layers are thinner, the Mo(+VI) incorporation significantly decreases. These two configurations implicate different corrosion performances in 5% sodium chloride solution at 35 °C. As the alkaline anodic layer formed with 0.3 M molybdate species is the thickest and the Mo incorporation is the more pronounced, its corrosion resistance is the highest. The effect of morphology and composition of anodic films on pitting corrosion is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号