首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The thermal conductivity κ and electrical resistivity ρ of a cellular ecoceramic, namely, the SiC/Si biomorphic composite, are measured in the temperature range 5–300 K. The SiC/Si biomorphic composite is fabricated using a cellular biocarbon template prepared from white eucalyptus wood by pyrolysis in an argon atmosphere with subsequent infiltration of molten silicon into empty through cellular channels of the template. The temperature dependences κ(T) and ρ(T) of the 3C-SiC/Si biomorphic composite at a silicon content of ~30 vol % are measured for samples cut out parallel and perpendicular to the direction of tree growth. Data on the anisotropy of the thermal conductivity κ are presented. The behavior of the dependences κ(T) and ρ(T) of the SiC/Si biomorphic composite at different silicon contents is discussed in terms of the results obtained and data available in the literature.  相似文献   

2.
铝和铝-锂合金的爆炸烧结试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
 本文研究了纯铝粉和快速凝固铝-锂合金粉的爆炸烧结工艺,测量了烧结体的密度,观察了烧结体内的微观组织和断口形貌。试验用粉末材料为水雾化铝粉、氮气雾化铝粉和氩气雾化铝-锂合金粉。试验时把粉末材料装在包套内,粉状炸药装在包套外的纸筒内,炸药从一端起爆。根据文中给出的爆炸烧结工艺参数的设计原则,通过系统地试验,已获得Φ17×70 mm的铝-锂棒材和Φ100×100 mm的纯铝棒材,相对密度超过98%,无中心孔(马赫孔)。微观组织和断口形貌观察结果表明:颗粒之间已达到焊接结合,结合区是由超细微晶组成,颗粒内部仍保持原始粉末的急冷组织。试验结果还表明:包套最终运动速度、包套内径、粉末材料强度、粉末材料表面氧化膜的厚度都是影响爆炸烧结质量的重要因素。  相似文献   

3.
The methods for dispersing nanodiamond powders of different purity grades and preparing nanodiamond powder suspensions suitable for fractionation are analyzed. The main physicochemical properties of fractions separated from the synthesis products (blends) and purified nanodiamonds are investigated. It is found that the size distribution of nanodiamonds in the blend is inhomogeneous: an increase in the particle size leads to a decrease in the fraction of these particles. The advantages of nanodiamonds fractionated in size are demonstrated for different applications.  相似文献   

4.
SiC nano-sized powder with high specific surface area is potentially of considerable interest to form fully dense SiC ceramics at lower sintering conditions (temperature/pressure). Surface structure of six kinds of commercially available SiC nano-sized powders produced by three different venders was analyzed in detail by X-ray photoelectron spectroscopy (XPS). The overall XPS spectra of all nano-sized powders detected O-based bond (O1s peak), C-based bond (C1s peak) and Si-based bond (Si2s and Si2p peak). Surface structure of nano-sized powders included one of three impurity phases: (1) free carbon, (2) silica and (3) silicon oxycarbide. Furthermore, the influences of surface structure by XPS were systematically investigated on basic powder characteristics, such as chemical composition, morphology, particle density and primary particle size. It was revealed that the basic powder characteristics had a close relationship to the surface structure of nano-sized powder each impurity.  相似文献   

5.
Nano sized hydroxyapatites with silicon substitution of three different silicon concentrations were successfully prepared first time by a rapid microwave assisted synthesis method, with a time saving and energy efficient technique. The effects of the Si substitution on crystallite size, particle size and morphology of the powders were investigated. The crystalline phase, microstructure, chemical composition, and morphology and particle size of hydroxyapatite and silicon substituted hydroxyapatites were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and dynamic light scattering. The crystallite size and particle size decreases with increase in silicon content and particle morphology spheroidal for pure hydroxyapatite changes to elongated ellipsoidal crystals while silicon substitution increases. Fourier Transform Infrared Spectroscopy analysis reveals, the silicon incorporation to hydroxyapatite lattice occurs via substitution of silicate groups for phosphate groups. Substitution of phosphate group by silicate in the apatite structure results in a small increase in the lattice parameters in both a-axis and c-axis of the unit cell.  相似文献   

6.
碳化硅薄膜脉冲激光晶化特性研究   总被引:2,自引:0,他引:2       下载免费PDF全文
于威  何杰  孙运涛  朱海丰  韩理  傅广生 《物理学报》2004,53(6):1930-1934
采用XeCl准分子激光对非晶碳化硅(a-SiC)薄膜的脉冲激光晶化特性进行了研究.通过原子力显微镜(AFM)和Raman光谱技术对退火前后薄膜样品的形貌、结构及物相特性进行了分析.结果表明,选用合适的激光能量采用激光退火技术能够实现a-SiC薄膜的纳米晶化.退火薄膜中的纳米颗粒大小随着激光能量密度的增加而增大;Raman谱分析结果显示了退火后的薄膜的晶态结构特性并给出了伴随退火过程存在的物相分凝现象.根据以上结果并结合激光退火特性,对a-SiC的脉冲激光晶化机理进行了讨论. 关键词: 激光退火 晶化 碳化硅  相似文献   

7.
The effect of the vibration strain amplitude on the Young modulus and ultrasonic absorption (internal friction) in biomorphic SiC ceramics is investigated in the temperature range 116–296 K. The biomorphic SiC ceramics is prepared through pyrolysis of eucalyptus with subsequent infiltration of silicon. It is demonstrated that the vibration loading of samples in air and under vacuum is accompanied by a number of unexpected effects. The behavior of the studied ceramics is governed by at least two mechanisms, which, to a large extent, are responsible for the elastic and inelastic properties of the material. One mechanism is associated with the adsorption-desorption of environmental molecules (hypothetically, owing to the presence of pores and residual carbon), and the other mechanism involves microplastic deformation due to the motion of dislocations or other (similar) structural units.  相似文献   

8.
SiCN and SiC nanopowders were prepared by infrared laser pyrolysis of gaseous precursors starting from a SiH4C2H2NH3 gas mixture. The SiCN powders were composed of an amorphous phase ascribed to the ternary compound with a β-SiC crystalline phase, while the SiC powders consisted of β phase only. The chemical bonding and the local atomic order in the SiCN powders are much more complicated than those of pure SiCSi3N4 mixtures and are strongly dependent on the variation in the initial gas composition. The average grain size was estimated from X-raydiffraction (XRD) patterns and atomic force microscopy (AFM). The UV-VIS transmittance data were used for the bandgap determination in these new materials. Absorption studies suggested that the direct energy gap is more favourable in SiCN and SiC nanoparticles and is blueshifted with regard to the crystalline bulk (SiC). The change of type of band-to-band transition in SiC nanopowders, due to the size effects, and increasing of the energy gap value in SiCN powders with different local atomic arrangement, makes them attractive for blue-UV optoelectronic applications. PACS 61.46.+w; 78.70.Ck; 68.3.Ps; 78.40.-q  相似文献   

9.
Some information on the history of dynamic synthesis of diamond in Ukraine is considered. Basic characteristics of ASM5 0.1/0 and ASM1 0.1/0 nanodiamond powders produced by static synthesis are described. The characteristics and surface properties of nanodiamond powders produced by detonation synthesis in Ukraine are presented. It is shown that the chemical activity of the particle surface can be controlled. Applications of nanopowders produced by detonation synthesis in various technologies are considered.  相似文献   

10.
The synthesis of SiC–Si–C materials by siliconizing porous carbon matrices has been considered, and a method of determining their phase composition has been devised. Preforms of two types have been siliconized, i.e., biomorphic carbon matrices prepared by wood pyrolysis and artificial porous graphites prepared by mixing and compacting carbon powders with an organic binder. The calculated phase compositions are in good agreement with microstructure metallographic examination data.  相似文献   

11.
Based on X-ray diffraction analysis, Auger spectroscopy, and Raman scattering, it is shown that carbonization of porous silicon at temperatures of 1200–1300°C results in formation of silicon carbide nanocrystals 5–7 nm in size. The growth of 3C-SiC nanocrystals of fixed size d proceeds as follows. Silicon nanocrystals with d = 3–7 nm pass into the liquid phase, thereby effectively participating in the growth of silicon carbide. After the size of a crystallite has achieved a critical value determined by the equality of its melting point and environmental temperature, the crystallite solidifies and virtually ceases to grow. As a result, a nanocrystalline Si-SiC-amorphous SiC heterostructure is obtained.  相似文献   

12.
Results of experimental studies on production of nanostructured silicon carbide powders in a plasma-chemical reactor based on a two-jet plasmatorch are presented. The conditions of SiC formation as a function of temperature and composition of the initial components are determined by thermodynamic calculations. Possibility of silicon carbide synthesis with the size of particles of 5?20 nm is shown experimentally.  相似文献   

13.
The method for carbothermal reduction of spherical particles of amorphous silicon dioxide is developed, and hexagonal α-SiC polytype nanocrystals are synthesized. The prepared samples are characterized by X-ray diffraction, Raman spectroscopy, photoluminescence spectroscopy, and electron microscopy. The silicon carbide nanocrystals prepared have sizes in the range 5–50 nm depending on the diameter of initial silicon dioxide particles. A detailed analysis of the positions of the lines in the Raman spectra, their broadening, and shift makes it possible to reliably establish that the samples under investigation predominantly contain the 6H and 4H silicon carbide polytypes and insignificant amounts of the 2H and 3C phases. The 15R and 21R polytypes in the samples are absent. It is noted that the samples are characterized by a substantial size effect: the luminescence intensity of small silicon carbide nanocrystals is more than three times higher than that of large SiC nanocrystals.  相似文献   

14.
X-ray diffraction and small-angle scattering study of nanoporous carbon samples prepared from polycrystalline α SiC and single-crystal 6H SiC is reported. The distribution function of carbon nanoclusters in size was found. In α SiC samples, the small size (10–12 Å) of nanoclusters is combined with their high size uniformity. Graphite-like nanoclusters 30–60 Å in size were found in samples of both types. In 6H SiC samples, such clusters make up a notable fraction of the volume. The experimentally observed structural anisotropy of the samples is discussed.  相似文献   

15.
This paper reports on the results of a comparative investigation into the elastic and microplastic properties of biomorphic SiC/Si composites and biomorphic SiC prepared by pyrolysis of oak and eucalyptus with subsequent infiltration of molten silicon into a carbon matrix and additional chemical treatment to remove excess silicon. The acoustic studies were performed by the composite oscillator technique using resonant longitudinal vibrations at frequencies of about 100 kHz. It is shown that, in biomorphic SiC (as in biomorphic SiC/Si) at small-amplitude strains ε, adsorption and desorption of the environmental (air) molecules determine to a considerable extent the Young’s modulus E and the internal friction (decrement of acoustic vibrations δ) and that the changes in E and δ at these amplitudes are irreversible. The stress-microplastic strain curves are constructed from the acoustic data for the materials under study at temperatures of 100 and 290 K.  相似文献   

16.
The thermopower coefficients of bio-SiC and SiC/Si ecoceramics prepared from sapele tree wood have been measured in the temperature interval 5–300 K. The measurements have been performed both along and perpendicular to empty (bio-SiC), as well as empty and partially silicon-filled (SiC/Si) channels in the samples. In bio-SiC, a contribution to thermopower associated with electron drag by phonons has been shown to exist within the temperature interval 5–200 (250) K. No such effect is realized in SiC/Si. This is assumed to derive from the presence in this material of heavily doped silicon embedded in SiC channels and the dominant part it plays in the behavior of the thermopower of this ceramics. The results obtained for the thermopower are compared with the available data for bio-SiC prepared from white eucalyptus tree wood and heavily doped bismuth.  相似文献   

17.
The effect of the vibrational strain amplitude on the Young’s modulus and ultrasound absorption (internal friction) of a SiC/Si biomorphic composite prepared by pyrolysis of sapele wood followed by infiltration of silicon were investigated. The studies were conducted in air and in vacuum by the acoustic resonance method with the use of a composite vibrator in longitudinal vibrations at frequencies of about 100 kHz. Measurements performed on sapele wood-based bio-SiC/Si samples revealed a substantial effect of adsorption-desorption of molecules contained in air on the effective elasticity modulus and elastic vibration decrement. Microplastic characteristics of the SiC/Si composites prepared from wood of different tree species were compared.  相似文献   

18.
Lead magnesium niobate, Pb(Mg1/3Nb2/3)O3 (PMN) ceramics were prepared from the columbite method using calcined powders of various milling time (24–96 h). The effects on the grain size and dielectric properties of the ceramics were investigated. The results show that dielectric properties of ceramics are strongly influenced by the milling time of the starting precursors. Higher percentage of perovskite phase was found in the ceramics that was milled longer and thus the dielectric constant was found to increase when compared to the conventional 24 h milled results. Moreover, milling time also affected the particle size of the starting precursors and that of PMN powders. Therefore, milling time did not only affect the particle size of PMN powders but also the resultant grain size and the formation of perovskite phase, consequently affecting the dielectric constant of the ceramics.  相似文献   

19.
The mechanism whereby powders may be compressed to form solid objects is not properly understood, largely because, until recently, the process has not been studied by sufficiently powerful techniques. This paper describes a number of techniques developed for a detailed study of powder compaction. Methods for measuring specific surface areas of powders and powder compacts, and hence the areas of contact between the particles, are discussed and reasons for selecting an adsorption method are explained. A gas adsorption apparatus capable of determining very small specific surface areas is described, as is the use of the scanning electron microscope. Both techniques were used to investigate particle fracture during compaction. In addition the study of pore size gives valuable insight into the movement of particle fragments once they have been produced. The use of mercury porosimetry in this connection is described.  相似文献   

20.
Studies have been performed to characterize the flow of certain powders of pharmaceutical interest from a vibrating spatula. Lactose, cromolyn sodium, sodium chloride and charcoal powders were prepared by milling or sieving. Jet milling yielded micronized powder (1–10 μm), which was recovered from the product jar or metal cyclone. Particles in the larger size ranges were prepared by sieving. Photomicrograph images of the products were obtained by scanning electron microscopy. All of the powders were subjected to flow studies from vibrating beds to a top loading pan balance. Cumulative mass versus time, flow profiles were plotted. Bulk flow properties, as reflected in mass flow rates (Mi), were assessed. Irregular flow patterns were obtained for lactose, cromolyn sodium and charcoal, whereas sodium chloride was free flowing. The lengths of the lines depicting cumulative mass versus time, for samples of each material, were estimated using the inswing structured walk technique. Stride lengths (γ) of 1–100 mm were employed. Fractal dimensions were obtained from graphs of the logarithm of the cumulative mass versus time line length plotted against the logarithm of the stride length. Thus, flow irregularities were indicated by fractal dimensions (δ). In all of the powders studied, mass flow rates increased as the particle size increased. Sodium chloride did not exhibit fractal behavior (δ ≤ 1.007), as there were no flow irregularities. Lactose, cromolyn sodium and charcoal did not appear to exhibit fractal behavior (δ ≤ 1.010) at large stride lengths (γ = 15–100 mm). At small stride lengths (γ = 1–10 mm) these materials did exhibit fractal behavior (δ equals; 1.029–1.059) indicative of flow irregularity. This method may be used to numerically quantify uniformity of flow from a vibrating spatula, and would be useful in a number of industrial processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号