首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method for the determination of the R-(+) and S-(-) enantiomers of propranolol in blood was developed. After extraction with heptane-isopentanol and derivatization with (+)-1-(9-fluorenyl)ethyl chloroformate, excess reagent was removed using solid-phase extraction. The enantiomers were separated on an achiral, reversed-phase, radially compressed column, and detected by fluorescence with excitation and emission wavelengths of 260 and 340 nm, respectively. The limit of quantification was 0.5 ng/ml. This method was used for pharmacokinetic analysis of propranolol enantiomers after administration of immediate-release (80 mg) or sustained-release (160 mg) racemic propranolol.  相似文献   

2.
A selective chiral high performance liquid chromatographic method was developed and validated to separate and quantify the enantiomers of a new potent selective 5-HT(1B/1D) receptor partial agonist, S-zolmitriptan, and its antipode in rat liver microsomes induced with beta-naphtho flavone. S- and R-zolmitriptan were extracted from rat hepatic microsomal incubates with chloroform/isopropanol (75:25, v/v), and were separated on a narrow-bore enantioselective normal phase Chiralpak AD-H column (250 x 0.46 mm) with hexane-isopropanol-triethylamine (72/28/0.25, v/v/v) as mobile phase and fluorescence detection with emission at 350 nm and excitation at 291 nm. The calibration curves were linear for R- and S-zolmitriptan concentration over the range 0.1-5.0 microg/mL (r = 0.9996 and 0.9999), and the limits of quantitation were 0.1 microg/mL. The metabolism and interaction of the enantiomers of zolmitriptan in treated hepatic microsomes were investigated using chiral HPLC. There was significant difference between the disposition of the S- and R-zolmitriptan when racemic zolmitriptan or single enantiomers of zolmitriptan were incubated for 5, 10 and 20 min, suggesting that the metabolism of zolmitriptan in rat liver microsomes is enantioselective. In addition, there was also a significant difference between the IC(50) of R- to S-zolmitriptan and S- to R-zolmitriptan (IC(50S/R)/IC(50R/S) = 45.2). This indicated that the disposition process favored the S-form of zolmitriptan.  相似文献   

3.
A validated HPLC-UV method was developed for the determination of R(-), S(+)-atenolol and R(-), S(+)-propranolol in pharmaceutical formulations. The proposed method required no elaborate sample preparation and was found to be selective, linear, and repeatable within the established ranges. Atenolol and propranolol isomers were separated using a Chirex 3022 (S) column with the mobile phases hexane-dichloromethane-methanol-trifluoroacetic acid (35 + 35 + 5 + 0.25, v/v/v/v) and hexane-dichloromethane-ethanol-trifluoroacetic acid (55 + 40 + 5 + 0.25, v/v/v/v), respectively. The LOD values of R(-) and S(+)-atenolol were 12.3 and 9.86 microg/mL, respectively, and 0.61 and 0.89 microg/mL, respectively, for R(-) and S(+)-propranolol. Retention times of R(-)-propranolol and S(+)-propranolol were 12.4 and 14.3 min, respectively, and 29.06 and 32.71 min, respectively, for (R)-atenolol and (S)-atenolol. The proposed method was applied to the determination of enantiomers in pharmaceutical formulations, and no interference from any excipients was found.  相似文献   

4.
A new and accurate HPLC method using sulfobutylether-beta-cyclodextrin (SBE-beta-CD) as chiral mobile phase additive (CMPA) was developed and validated for the determination of R-(+)pantoprazole in S-(-)pantoprazole. The influences of type and concentration of CD, ACN content and buffer pH of mobile phase on the resolution and retention of enantiomers were investigated. A baseline resolution of pantoprazole enantiomers was achieved on a Spherigel C18 column (150 mm x 4.6 mm, 5 microm) using ACN and 10 mM phosphate buffer (pH 2.5) containing 10 mM SBE-beta-CD (15:85 v/v) as mobile phase with a flow rate of 0.9 mL/min at 20 degrees C. The detection wavelength was set at 290 nm. The method was extensively validated in terms of accuracy, precision and linearity according to the International Conference on Harmonisation (ICH) guidelines and proved to be robust. The LOD and LOQ for R-(+)pantoprazole were 0.2 and 0.5 microg/mL, respectively, with 5 microL injection volume. A good linear relationship was obtained in the concentration range of 0.5-6.0 microg/mL with r(2) >0.999 for R-(+)pantoprazole. The percentage recovery of the R-(+)pantoprazole ranged from 92.1 to 101.2 in bulk drug of S-(-)pantoprazole. The method is capable of determining a minimum limit of 0.05% w/w of R-enantiomer in S-(-)pantoprazole bulk samples.  相似文献   

5.
A sensitive, enantioselective, high-performance liquid chromatographic (HPLC) method was developed and validated to determine S-(-)- and R-(+)-bisoprolol in human plasma. Baseline resolution was achieved using the teicoplanin macrocyclic antibiotic chiral stationary phase (CSP) known as Chirobiotic T with a polar ionic mobile phase (PIM) consisting of methanol-glacial acetic acid-triethylamine (100 : 0.02 : 0.025, v/v/v) at a flow rate of 1.5 ml/min and fluorescence detection set at 275 nm for excitation and 305 nm for emission. All analyses with S-(-)-atenolol as the internal standard were conducted at ambient temperature. The assay involved the use of a solid-phase extraction procedure for human plasma samples prior to HPLC analysis. The C18 cartridge gave good recovery rates for both enantiomers without any interference. The method was validated over the range of 20-200 ng/ml for each enantiomer concentration. Recovery rates for S-(-)- and R-(+)-bisoprolol enantiomers were in the range of 95-102%. The method proved to be precise (within-run precision expressed as % RSD ranged from 1.0-6.2% and between-run precision ranged from 0.9-6.7%) and accurate (within-run accuracies expressed as percentage error ranged from 0.2-4.8% and between-run accuracies ranged from 0.3-1.7%). The limit of quantitation and limit of detection for each enantiomer in human plasma were 20 and 5 ng/ml, respectively.  相似文献   

6.
An enantioselective method for baclofen (4-amino-3-p-chlorophenylbutyric acid) based on capillary electrophoresis (CE) separation and laser-induced fluorescence (LIF) detection has been developed. Naphthalene-2,3-dicarboxaldehyde (NDA) was used for precolumn derivatization of the nonfluorescent drug. alpha-Cyclodextrin (alpha-CD) was included in the buffer as a chiral selector for the separation of NDA-labeled S-(+)- and R-(-)-baclofen. Optimal resolution and detection were obtained with an electrophoretic buffer of 50 mM sodium borate (pH 9.5) containing 7 mM alpha-CD and a He-Cd laser (lambda ex = 442 nm, lambda em = 500 nm). Combined with a simple cleanup procedure, this method can be applied to the analysis of baclofen enantiomers in human plasma. The relative standard deviation (RSD) values on peak areas of a plasma sample containing 1.0 microM racemic baclofen were 6.4 and 4.9% (n = 8) for the S-(+)- and R-(-)-enantiomer, respectively. The RSD value on migration times of both enantiomers was 0.5% (n = 8). Calibration graphs for S-(+)- and R-(-)-baclofen in plasma showed a good linearity (r > or = 0.999) in the concentration range of 0.1-2.0 microM. The limit of detection of baclofen in plasma was about 10 ng/mL.  相似文献   

7.
The percutaneous penetration of R-(+)- and S-(-)-propranolol (PL) through rat excised skin was investigated in vitro. The flux of S-(-)-PL after application to normal skin was high compared with that of R-(+)-PL. On the other hand, in damaged rat skin, the flux of R-(+)-PL was almost equivalent to that of S-(-)-PL. It is suggested that there is an enantiomeric difference between S-(-)- and R-(+)-PL in terms of penetration through rat stratum corneum.  相似文献   

8.
A reliable and specific method for the determination of citalopram enantiomers was developed and validated. Chromatographic resolution of citalopram enantiomers was made on a Shim-pack (5 microm particle size) cyanopropyl column with beta-cyclodextrin (beta-CD) as an effective chiral mobile phase additive. The composition of the mobile phase was (90 + 10, v/v) aqueous 0.1% triethylammonium acetate buffer, pH 4.0 (adjusted with acetic acid), and acetonitrile, containing 12 mM beta-CD. The flow rate was 0.8 mL/min with ultraviolet detection at 240 nm. The effects of the mobile phase composition, concentration of beta-CD, and pH of the triethylammonium acetate buffer on peak shape and resolution of the enantiomers were investigated. The calibration graphs were linear (r = 0.9999, n = 8) in the range of 1-40 microg/mL for S(+) citalopram and R-(-) citalopram. The limit of detection values were 5.51 x 10(-3) and 4.35 x 10(-3) pg/mL, while the limit of quantification values were found to be 1.84 x 10(-2) and 1.45 x 10(-2) microg/mL for S-(+) citalopram and R-(-) citalopram, respectively.  相似文献   

9.
姚彤炜  曾苏  丁海青 《色谱》1997,15(4):316-318
以β-CD为手性流动相添加剂、苯巴比妥为内标,于FLC-C8反相柱上建立了鼠肝微粒体中5-(对-羟基苯基)-5-苯基乙内酰脲(p-HPPH)外消旋体的拆分方法。测得p-HPPH对映体的线性范围为0.5~110mg/L(r=0.9996);最低检出量为5ng(S/N=3);S-p-HPPH的回收率为93.6%±2.8%,R-p-HPPH的回收率为94.7%±1.8%;日内和日间精密度RSD值均小于2%。所建立的方法具有结果准确、操作方便等特点。  相似文献   

10.
An enantioselective liquid chromatographic assay for the simultaneous determination of the S-(+) and R-(-) enantiomers of the monohydroxylated metabolite of oxcarbazepine in human plasma is described. The metabolite is the active principle. The method is based on the extraction of plasma with diethyl ether-dichloromethane (2:1, v/v), separation of the organic phase, evaporation of the solvent and dissolution of the residue in the mobile phase. The two enantiomers were resolved on a Chiralcel OD (250 mm x 4.6 mm I.D.) high-performance liquid chromatographic column. The separation was achieved by isocratic elution with n-hexane-2-propanol (77:23, v/v). The flow-rate of the mobile phase was 1.0 ml/min and the two enantiomers were detected by ultraviolet absorbance at 210 nm. The analytical method is suitable for the quantitative and simultaneous determination of the two enantiomers in plasma at concentrations down to 0.4 mumol/l after administration of oxcarbazepine.  相似文献   

11.
A sensitive enantioselective high-performance liquid chromatography (HPLC) method was developed and validated to determine S-(+)- and R-(-)-arotinolol in human plasma. Baseline resolution was achieved by using teicoplanin macrocyclic antibiotic chiral stationary phase (CSP) known as Chirobiotic T with a polar organic mobile phase consisting of methanol:glacial acetic acid:triethylamine, 100:0.1:0.1, (v/v/v) at a fl ow rate of 0.8 mL/min and UV detection set at 317 nm. Human plasma was spiked with stock solution of arotinolol enantiomers and labetalol as the internal standard. The assay involved the use of liquid-liquid extraction procedure with ethyl ether under alkaline condition for human plasma sample prior to HPLC analysis. Recoveries for S-(+)- and R-(-)-arotinolol enantiomers were in the range 93-103% at 200-1400 ng/mL level. Intra-day and inter-day precision calculated as %RSD was in the ranges 1.3-3.4 and 1.9-4.5% for both enantiomers, respectively. Intra-day and inter-day accuracies calculated as percentage error were in the ranges 1.2-3.5 and 1.5-6.2% for both enantiomers, respectively. Linear calibration curves in the concentration range 100-1500 ng/mL for each enantiomer showed a correlation coefficient (r) of 0.9998. The limit of quantitation (LOQ) and limit of detection (LOD) for each enantiomer in human plasma were 100 and 50 ng/mL (S/N = 3), respectively.  相似文献   

12.
A reversed-phase high-performance liquid chromatographic method is described, which allows the simultaneous quantification of propranolol and 4-hydroxypropranolol enantiomers in human plasma. After extraction from plasma (pH 10.5) using ethyl acetate, the enantiomers are derivatized with R-(+)-phenylethylisocyanate as chiral derivatization reagent and triethylamine as basic catalyst in chloroform. Ascorbic acid is used to prevent 4-hydroxypropranolol from oxidation during the extraction. Chromatographic separation on ODS columns and fluorescence detection (228 nm/greater than 340 nm) allows sensitive quantitation of all derivatives. Incubation of the plasma samples with beta-glucuronidase/arylsulfatase and the use of the specific beta-glucuronidase inhibitor saccharo-1,4-lactone allows the quantitation of both the sulfate and glucuronide conjugates of the enantiomers. The method was applied to human plasma samples from a subject after administration of 60 mg racemic propranolol three times daily.  相似文献   

13.
手性荧光衍生化反相高效液相法分离肾上腺素对映体   总被引:3,自引:1,他引:3  
 以R (- ) /S (+) 4 (N ,N dimethylaminosulfonyl) 7 (3 iso thiocyanatopyrrolidino) 2 ,1,3 benzoxadiazole(DBD PyNCS)为手性荧光衍生化试剂 ,用反相高效液相法 (RP HPLC)对 DL 肾上腺素对映体进行分离。衍生化反应是在含有 7%吡啶的溶剂中 ,6 5℃温度条件下反应 35min ,生成具有荧光特性的肾上腺素非对映体衍生物(λex=4 6 0nm ,λem=5 5 0nm)。生成的非对映体衍生物在流动相为乙腈 水 (体积比为 2 8∶72 ) ,流速为 1 0mL/min时 ,在DiamonsilTMC18柱 (15 0mm× 4 6mmi d ,5 μm)上分离度可达 2 6。  相似文献   

14.
The purpose of this work is to investigate the chiral recognition characteristics of β-cyclodextrin with two propranolol enantiomers in the presence of organic additives. Steady-state fluorescence measurements of propranolol β-cyclodextrin (β-CD) complexes were performed for solutions containing either 1- or 2-butanol. For each 2-butanol isomer solution, the interactions were assessed by comparing the changes in the fluorescence of (R)-(+)- propranolol versus (S)-(-)-propranolol as a function of CD concentration. A similar comparison study was done for the propranolol enantiomers in the presence of 1-butanol. The intensity changes for propranolol are relatively small upon addition of β-CD in the presence of the butanol alcohol. However, the present work shows that the interaction of (R)-(+)-propranolol with β-CD is influenced by the chirality of 2-butanol in contrast to (S)-(-)-propranolol.This revised version was published online in July 2005 with a corrected issue number.  相似文献   

15.
张颖怡  李良  邢旭琴  周政政  马安德 《色谱》2018,36(12):1290-1296
建立了高效液相色谱-串联质谱(HPLC-MS/MS)分析毛发中甲基苯丙胺与苯丙胺对映异构体的手性分离方法。采用SUPELCO Astec CHIROBIOTIC® V2手性液相色谱柱,以甲醇-含0.1%(v/v)甲酸的20 mmol/L乙酸铵水溶液(99:1,v/v)为流动相进行手性分离。结果表明,甲醇高温水浴超声法能较好地提取苯丙胺类化合物,且峰形较好(拖尾因子>0.95)。S-(+)-甲基苯丙胺、R-(-)-甲基苯丙胺、S-(+)-苯丙胺和R-(-)-苯丙胺在15~300 ng/mg范围内线性关系良好,相关系数均大于0.99;甲基苯丙胺和苯丙胺的检出限分别为0.1 ng/mg和0.15 ng/mg,定量限分别为0.4 ng/mg和0.5 ng/mg;日内精密度均≤6.8%,日间精密度均≤11.4%。采用所建方法对50余嫌疑人毛发进行手性分析,检出单一S-(+)-甲基苯丙胺和S-(+)-苯丙胺的占70%,同时检出S-(+)-甲基苯丙胺、R-(-)-甲基苯丙胺、S-(+)-苯丙胺和R-(-)-苯丙胺的占18%。该法简单快速,精密度好,可为实际法医毒物鉴定案例中的毛发手性分析提供技术支持与科学依据。  相似文献   

16.
Tábi T  Magyar K  Szöko E 《Electrophoresis》2003,24(15):2665-2673
A chiral capillary electrophoresis method has been developed for the simultaneous separation of the enantiomers of deprenyl and eight of its metabolites, among them the recently described metabolite deprenyl-N-oxide. Although heptakis-(2,6-di-O-methyl)-beta-cyclodextrin (DIMEB) was suitable for the enantioresolution of deprenyl and its dealkylated derivatives, the enantiomers of deprenyl-N-oxide were just partly resolved. Carboxymethyl-beta-cyclodextrin (CMBCD) in as low as 2 mM concentration was capable of the enantiomer separation of all the nine examined compounds, however co-migration of 1R,2S-(-)-norephedrine and 1R,2R-(-)-pseudoephedrine, as well as 1S,2R-(+)-ephedrine and R-(-)-amphetamine was observed. This problem could be overcome by the use of a dual cyclodextrin system containing 4 mM DIMEB in addition to 2 mM CMBCD; simultaneous separation of all the compounds could be achieved. The optimized method was used for the analysis of rat urine samples after 10 days of treatment of animals with either R-(-)- or S-(+)-deprenyl. The stereospecific biotransformation of both deprenyl enantiomers was confirmed, and the stereoselectivity of N-oxide formation was demonstrated.  相似文献   

17.
A sensitive, simple, specific, precise, accurate and rugged method for the assay and determination of enantiomeric purity of S-(-)-9-fluoro-6,7-dihydro-8-(4-hydroxypiperidin-1-yl)-5-methyl-1-oxo-1H,5H-benzo[i,j]quinolizine-2-carboxylic acid L-arginine salt tetrahydrate (WCK 771) in bulk drug has been developed. The method is RP-HPLC using endcapped C-18 stationary phase and chiral mobile phase. Chirality to the mobile phase was imparted with addition of beta-cyclodextrin. The UV-vis detector was operated at 290 nm. The flow rate of mobile phase was 2 ml/min. The method offers excellent separation of two enantiomers with resolution more than 2 and tailing factor less than 1.5. The method was validated for the assay of WCK 771 and quantification of R-(+)-enantiomer impurity in bulk drug. The calibration curves showed excellent linearity over the concentration range of 0.05-0.15 mg/ml for WCK 771 and 0.5-7.5 microg/ml for R-(+)-enantiomer. The precision (RSD) of the assay was 0.23%. The limit of detection and limit of quantitation of the method for WCK 771 were 0.015 and 0.06 microg/ml, respectively. The limit of detection and limit of quantitation for R-(+)-enantiomer were 0.025 and 0.09 microg/ml, respectively. The average recovery of the R-(+)-enantiomer was 100.5%. Same method was applied for the assay and determination of enantiomeric purity of WCK 771 in the intravenous formulation.  相似文献   

18.
TiO(2) nano-thin films with imprinted (R)- and (S)-enantiomers of propranolol, 1,1'-bi-naphthol, and 2-(4-isobutylphenyl)-propionic acid were fabricated on quartz plates by spin-coating their solutions with Ti(O-(n)Bu)(4) in a toluene-ethanol mixture (1:1, v/v). After template removal, the imprinted films showed better binding for original templates than to the corresponding enantiomers. The assessment of template incorporation, template removal, and re-binding was conducted through UV-vis measurements. Significant enhancement of enantioselectivity was achieved by optimization of the film thickness and by heat-treatment of the imprinted films. After subtraction of non-specific binding, the optimized films provided chiral recognition with the enantioselectivity of almost 100% for (R)-propranolol and 95% for (S)-propranolol.  相似文献   

19.
A high-performance liquid chromatographic (HPLC) technique is described for quantification of R(+)- and S(-)-propranolol from 100-microliters rat blood samples. The procedure involves chiral derivatization with tert.-butoxycarbonyl-L-leucine anhydride to form diastereomeric propranolol-L-leucine derivatives which are separated on a reversed-phase HPLC column. The method as previously reported has been modified for assaying serial blood microsamples obtained from the rat for pharmacokinetic studies. An internal standard, cyclopentyldesisopropylpropranolol, has been incorporated into the assay and several derivatization parameters have been altered. Standard curves for both enantiomers were linear over a 60-fold concentration range in 100-microliters samples of whole rat blood (12.5-750 ng/ml; r = 0.9992 for each enantiomer). Inter- and intra-assay variability was less than 12% for each enantiomer at 25 ng/ml. No enantiomeric interference or racemization was observed as a result of the derivatization. No analytical interference was noted from endogenous components in rat blood samples. Preliminary data from two male Sprague-Dawley rats given a 2.0 mg/kg intravenous dose of racemic propranolol revealed differential disposition of the two enantiomers. R(+)-Propranolol achieved higher initial concentration but was eliminated more rapidly than S(-)-propranolol. Terminal half-lives of R(+)- and S(-)-propranolol were 19.23 and 51.95 min, respectively, in one rat, and 14.50 and 52.07 min, respectively, in the other.  相似文献   

20.
A specific and validated high-performance liquid chromatographic method was developed for the determination of the S-(-) and R-(+) enantiomers of saterinone. 1-[(4-cyano-1,2-dihydro-6-methyl-2-oxopyridin-5-yl)phenoxyl] -3-[4-(2- methoxyphenyl)piperazin-1-yl]propan-2-ol, in plasma at the low ng/ml level. The enantiomers of saterinone and an internal standard, 1-[(4-cyano-1,2-dihydro-6-methyl-2-oxo-pyridin-5-yl)phenoxy]-3-[4-(2- ethoxyphenyl)piperazin-1-yl]propan-2-ol, were chromatographed on a chiral Chiralcel OD stationary phase. However, the S-(-) enantiomers of saterinone and the internal standard were unresolved, as were the R-(+) enantiomers of both substances. Therefore, the two fractions were collected and each was separately resolved on an achiral Polyencap A reversed-phase column and quantified. The detection limit was 0.5 ng/ml of enantiomer, allowing the determination of plasma levels up to 36 h after oral administration of 90, 150 and 180 mg of saterinone to twelve subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号