首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new and accurate HPLC method using sulfobutylether-beta-cyclodextrin (SBE-beta-CD) as chiral mobile phase additive (CMPA) was developed and validated for the determination of R-(+)pantoprazole in S-(-)pantoprazole. The influences of type and concentration of CD, ACN content and buffer pH of mobile phase on the resolution and retention of enantiomers were investigated. A baseline resolution of pantoprazole enantiomers was achieved on a Spherigel C18 column (150 mm x 4.6 mm, 5 microm) using ACN and 10 mM phosphate buffer (pH 2.5) containing 10 mM SBE-beta-CD (15:85 v/v) as mobile phase with a flow rate of 0.9 mL/min at 20 degrees C. The detection wavelength was set at 290 nm. The method was extensively validated in terms of accuracy, precision and linearity according to the International Conference on Harmonisation (ICH) guidelines and proved to be robust. The LOD and LOQ for R-(+)pantoprazole were 0.2 and 0.5 microg/mL, respectively, with 5 microL injection volume. A good linear relationship was obtained in the concentration range of 0.5-6.0 microg/mL with r(2) >0.999 for R-(+)pantoprazole. The percentage recovery of the R-(+)pantoprazole ranged from 92.1 to 101.2 in bulk drug of S-(-)pantoprazole. The method is capable of determining a minimum limit of 0.05% w/w of R-enantiomer in S-(-)pantoprazole bulk samples.  相似文献   

2.
姚彤炜  曾苏  丁海青 《色谱》1997,15(4):316-318
以β-CD为手性流动相添加剂、苯巴比妥为内标,于FLC-C8反相柱上建立了鼠肝微粒体中5-(对-羟基苯基)-5-苯基乙内酰脲(p-HPPH)外消旋体的拆分方法。测得p-HPPH对映体的线性范围为0.5~110mg/L(r=0.9996);最低检出量为5ng(S/N=3);S-p-HPPH的回收率为93.6%±2.8%,R-p-HPPH的回收率为94.7%±1.8%;日内和日间精密度RSD值均小于2%。所建立的方法具有结果准确、操作方便等特点。  相似文献   

3.
A simple and fast capillary electrophoretic method has been developed for the enantioselective separation of citalopram and its main metabolites, namely N-desmethylcitalopram and N,N-didesmethylcitalopram, using beta-cyclodextrin (beta-CD) sulfate as the chiral selector. For method optimisation several parameters were investigated, such as CD and buffer concentration, buffer pH, and capillary temperature. Baseline enantioseparation of the racemic compounds was achieved in less than 6 min using a fused-silica capillary, filled with a background electrolyte consisting of a 35 mM phosphate buffer at pH 2.5 supplemented with 1% w/v beta-CD sulfate and 0.05% w/v beta-CD at 25 degrees C and applying a voltage of -20 kV. A fast separation method for citalopram was also optimized and applied to the analysis of pharmaceutical formulations. Racemic citalopram was resolved in its enantiomers in less than 1.5 min using short-end injection (8.5 cm, effective length) running the experiments in a background electrolyte composed of a 25 mM citrate buffer at pH 5.5 and 0.04% w/v beta-CD sulfate at a temperature of 10 degrees C.  相似文献   

4.
A sensitive enantioselective high-performance liquid chromatography (HPLC) method was developed and validated to determine S-(+)- and R-(-)-arotinolol in human plasma. Baseline resolution was achieved by using teicoplanin macrocyclic antibiotic chiral stationary phase (CSP) known as Chirobiotic T with a polar organic mobile phase consisting of methanol:glacial acetic acid:triethylamine, 100:0.1:0.1, (v/v/v) at a fl ow rate of 0.8 mL/min and UV detection set at 317 nm. Human plasma was spiked with stock solution of arotinolol enantiomers and labetalol as the internal standard. The assay involved the use of liquid-liquid extraction procedure with ethyl ether under alkaline condition for human plasma sample prior to HPLC analysis. Recoveries for S-(+)- and R-(-)-arotinolol enantiomers were in the range 93-103% at 200-1400 ng/mL level. Intra-day and inter-day precision calculated as %RSD was in the ranges 1.3-3.4 and 1.9-4.5% for both enantiomers, respectively. Intra-day and inter-day accuracies calculated as percentage error were in the ranges 1.2-3.5 and 1.5-6.2% for both enantiomers, respectively. Linear calibration curves in the concentration range 100-1500 ng/mL for each enantiomer showed a correlation coefficient (r) of 0.9998. The limit of quantitation (LOQ) and limit of detection (LOD) for each enantiomer in human plasma were 100 and 50 ng/mL (S/N = 3), respectively.  相似文献   

5.
A rapid and stereospecific HPLC micromethod to quantify flurbiprofen enantiomers was developed. Both flurbiprofen enantiomers and indomethacin, used as internal standard, were extracted with methylene chloride from 100 microL of acidified plasma. The resolution of the R- and S-forms was performed on a bonded vancomycin chiral stationary phase (Chirobiotic V) with 20% of tetrahydrofuran in ammonium nitrate (100 mM, pH 5) as mobile phase. Calibration curves were linear in the range 0.5-10 microg/mL for both enantiomers. A good accuracy (< or = 5%) was obtained for all quality controls, with intra-day and inter-day variation coefficients equal or less than 7.7%. Recovery of both enantiomers was found in the range 77.4-86.3%. The lower limit of quantitation was 0.25 microg/mL for both enantiomers, without interference of endogenous components. This validated micromethod has been successfully applied for quantifying R- flurbiprofen and S- flurbiprofen in rat plasma.  相似文献   

6.
郭娜  高新星  徐国防  郭兴杰 《色谱》2008,26(2):259-261
采用C18固定相,以羟丙基-β-环糊精为手性流动相添加剂,建立了奥昔布宁对映体的高效液相色谱拆分方法。考察了手性添加剂、有机极性调节剂、缓冲盐的种类和浓度以及流动相的pH值和流速及柱温等因素对对映体分离的影响。在最佳分离条件下,奥昔布宁对映体的分离度为1.54,检测限为1.0 ng。该方法简便,重复性好,比手性固定相法更加经济。  相似文献   

7.
A selective chiral high performance liquid chromatographic method was developed and validated to separate and quantify the enantiomers of a new potent selective 5-HT(1B/1D) receptor partial agonist, S-zolmitriptan, and its antipode in rat liver microsomes induced with beta-naphtho flavone. S- and R-zolmitriptan were extracted from rat hepatic microsomal incubates with chloroform/isopropanol (75:25, v/v), and were separated on a narrow-bore enantioselective normal phase Chiralpak AD-H column (250 x 0.46 mm) with hexane-isopropanol-triethylamine (72/28/0.25, v/v/v) as mobile phase and fluorescence detection with emission at 350 nm and excitation at 291 nm. The calibration curves were linear for R- and S-zolmitriptan concentration over the range 0.1-5.0 microg/mL (r = 0.9996 and 0.9999), and the limits of quantitation were 0.1 microg/mL. The metabolism and interaction of the enantiomers of zolmitriptan in treated hepatic microsomes were investigated using chiral HPLC. There was significant difference between the disposition of the S- and R-zolmitriptan when racemic zolmitriptan or single enantiomers of zolmitriptan were incubated for 5, 10 and 20 min, suggesting that the metabolism of zolmitriptan in rat liver microsomes is enantioselective. In addition, there was also a significant difference between the IC(50) of R- to S-zolmitriptan and S- to R-zolmitriptan (IC(50S/R)/IC(50R/S) = 45.2). This indicated that the disposition process favored the S-form of zolmitriptan.  相似文献   

8.
关瑾  杨晶  毕玉金  石爽  李发美 《色谱》2007,25(5):732-734
利用反相高效液相色谱法在大环抗生素类手性固定相万古霉素键合手性固定相(Chirobiotic V)上直接分离了泰妥拉唑对映体。考察了缓冲溶液的种类、浓度和pH值,有机改性剂的种类和浓度,柱长和柱温等对手性分离的影响。优化后的色谱条件为:Chirobiotic V色谱柱(150 mm×4.6 mm,5 μm),流动相为0.02 mol/L 醋酸铵缓冲液(pH 6.0)-四氢呋喃(体积比为93∶7),流速为0.5 mL/min,柱温为20 ℃,检测波长为306 nm。在此条件下泰妥拉唑对映体达到了基线分离,分离度达1.68;对映体保留时间的相对标准偏差分别为0.48%和0.49%(n=6),峰面积的相对标准偏差分别为0.45%和0.55%(n=6)。所建立的手性分离方法具有简便快速及重复性好等优点。  相似文献   

9.
Native and three selectively methylated β-cyclodextrin (β-CD)-bonded stationary phases without an unreacted spacer arm for liquid chromatography were prepared, where heptakis(2-O-methyl)-β-CD, heptakis(3-O-methyl)-β-CD and heptakis(2,3-di-O-methyl)-β-CD were used as the methylated β-CDs. The enantiomer separation abilities of the resulting β-CD stationary phases for 12 pairs of dansylamino acid enantiomers and six pairs of N-3,5-dinitrobenzoyl amino acid methyl esters as model solutes were investigated. The effects of pH and methanol content of the mobile phase on the retention and resolution were examined to optimize the mobile phase conditions. The optimum resolution for the dansylamino acids was achieved using a mobile phase consisting of 1.0% triethylammonium acetate buffer (pH 5.0)–methanol (v/v 4/6) on the β-CD stationary phase. Heptakis(3-O-methyl)- and heptakis(2,3-di-O-methyl)-β-CD-bonded stationary phases showed little enantiomer separation abilities for the dansylamino acids. The heptakis(2-O-methyl)-β-CD-bonded stationary phase exhibited no enantioselectivities for those solutes.

For the N-3,5-dinitrobenzoyl amino acid methyl esters, the optimum resolution was achieved using a mobile phase consisting of 1.0% triethylammonium acetate buffer (pH 5.0)–methanol (v/v 9/1) on a heptakis(2-O-methyl)-β-CD stationary phase. The heptakis(2,3-di-O-methyl)-β-CD-bonded stationary phases exhibited no enantioselectivities for the N-3,5-dinitrobenzoyl amino acid methyl esters. β-CD and heptakis(3-O-methyl)-β-CD-bonded stationary phases had no enantiomer separation abilities for those solutes except for the N-3,5-dinitrobenzoyl phenylalanine methyl ester.  相似文献   


10.
Propranolol, available commercially as a racemic mixture, is a non-selective beta-adrenergic blocking agent used in the treatment of hypertension, angina pectoris and cardiac arrhythmias. We have developed and validated an RP-HPLC assay method for direct determination of R-(+)- and S-(-)-propranolol glucuronide in rat hepatic microsomes to investigate the enantioselectivity of propranolol glucuronidation metabolism. A baseline separation of propranolol glucuronide enantiomers was achieved on a 5 microm reversed-phase ODS column, with a mixture of phosphate buffer (pH 3.5, 0.067 mol/L) and methanol (55:45, v/v) as mobile phase. Ultraviolet detection was set at 220 nm, and p-nitrobenzoic acid was used as internal standard. The standard curve of assay for R-(+)- and S-(-)-propranolol glucuronide in spiked microsomal incubate showed good linearity throughout the concentration range from 0.50 to 20.0 micromol/L. The analytical method affords average recovery of 99.8 and 100.1% for R-(+)- and S-(-)-propranolol glucuronide, respectively. The method provides a high sensitivity and good precision for R-(+)- and S-(-)-propranolol glucuronide (RSD < 10%). The LOD was 0.15 micromol/L and the LOQ was 0.5 micromol/L (RSD < 8%, n = 5) for both R-(+)- and S-(-)-propranolol glucuronide. The method is simple, precise and accurate, and is suitable for quantifying the propranolol glucuronides enantiomers in rat hepatic microsomes.  相似文献   

11.
A sensitive, simple, specific, precise, accurate and rugged method for the assay and determination of enantiomeric purity of S-(-)-9-fluoro-6,7-dihydro-8-(4-hydroxypiperidin-1-yl)-5-methyl-1-oxo-1H,5H-benzo[i,j]quinolizine-2-carboxylic acid L-arginine salt tetrahydrate (WCK 771) in bulk drug has been developed. The method is RP-HPLC using endcapped C-18 stationary phase and chiral mobile phase. Chirality to the mobile phase was imparted with addition of beta-cyclodextrin. The UV-vis detector was operated at 290 nm. The flow rate of mobile phase was 2 ml/min. The method offers excellent separation of two enantiomers with resolution more than 2 and tailing factor less than 1.5. The method was validated for the assay of WCK 771 and quantification of R-(+)-enantiomer impurity in bulk drug. The calibration curves showed excellent linearity over the concentration range of 0.05-0.15 mg/ml for WCK 771 and 0.5-7.5 microg/ml for R-(+)-enantiomer. The precision (RSD) of the assay was 0.23%. The limit of detection and limit of quantitation of the method for WCK 771 were 0.015 and 0.06 microg/ml, respectively. The limit of detection and limit of quantitation for R-(+)-enantiomer were 0.025 and 0.09 microg/ml, respectively. The average recovery of the R-(+)-enantiomer was 100.5%. Same method was applied for the assay and determination of enantiomeric purity of WCK 771 in the intravenous formulation.  相似文献   

12.
An enantioselective liquid chromatographic assay for the simultaneous determination of the S-(+) and R-(-) enantiomers of the monohydroxylated metabolite of oxcarbazepine in human plasma is described. The metabolite is the active principle. The method is based on the extraction of plasma with diethyl ether-dichloromethane (2:1, v/v), separation of the organic phase, evaporation of the solvent and dissolution of the residue in the mobile phase. The two enantiomers were resolved on a Chiralcel OD (250 mm x 4.6 mm I.D.) high-performance liquid chromatographic column. The separation was achieved by isocratic elution with n-hexane-2-propanol (77:23, v/v). The flow-rate of the mobile phase was 1.0 ml/min and the two enantiomers were detected by ultraviolet absorbance at 210 nm. The analytical method is suitable for the quantitative and simultaneous determination of the two enantiomers in plasma at concentrations down to 0.4 mumol/l after administration of oxcarbazepine.  相似文献   

13.
An accurate and reproducible method for the simultaneous determination of ampicillin (AMP), sulbactam (SUL), and cefoperazone (CFP) in pharmaceutical formulations by using HPLC with beta-CD stationary phase was developed. It involved the use of the added tetraethylammonium acetate (TEAA) reagent, pH, and methanol as the significant parameters to find the optimum separation condition. A high resolution and selectivity of analytes was obtained by running the mobile phase in methanol-5 mM TEAA buffer = 35:65 (v/v, pH 4.5) at 280 nm. The mean recoveries ranged from 96.6 to 103.3% for AMP in the synthetic mixture, 97.6 to 103.0% for SUL, and 97.0 to 104.0% for CFP. The low LOD (<1.8 microg/mL) and low CV (<0.9%) assured that this method was sensitive and reproducible. The assay of analytes in commercial products exhibited that it was convenient and reproducible for routine analyses of these components in sterilized H(2)O, saline, or 5% dextrose injection solutions.  相似文献   

14.
A fast, economic, reproducible, accurate, effective, rugged and selective chiral-HPLC method was developed and validated for the enantiomeric resolution of nebivolol enantiomers [(+)-RRRS and (-)-SSSR)] in dosage formulation. The method was rapid as chiral separation occurred within only 12 min. The mobile phase used was n-heptane-ethanol-DEA (85:15:0.1, v/v) at 3.0 mL/min flow-rate with 225 nm detection. The column used was an amylase-based 3-AmyCoat (150 × 46 mm) [tris-(3,5-dimethylphenyl carbamate)]. The capacity factors of (+)-RRRS and (-)-SSSR enantiomers were 7.85 and 10.90 while the separation and resolution factors were 1.39 and 1.83, respectively. The limits of detection and quantitation for (+)-RRRS enantiomer were 4.5 and 10.00 μg/mL, while these values for (-)-SSSR enantiomer were 4.1 and 8.2 μg/mL, respectively. The linearity was observed in the concentrations range of 0.10-1.0 mg/mL for both enantiomers. The π-π interactions, hydrogen bonds, dipole-dipole interactions and steric effects control the chiral resolution of nebivolol enantiomers on the reported chiral column. The reported method can be used for the quality control of nebivolol in pharmaceutical preparations with good economy. In addition, this method can also be used for the analysis of (+)-RRRS and (-)-SSSR) enantiomers in biological and environmental samples.  相似文献   

15.
Mirtazapine (MIR) and two of its main metabolites, namely, 8-hydroxymirtazapine and N-desmethylmirtazapine, were separated in totheir enantiomers by nanoLC in a laboratory-made fused-silica capillary column (75 microm ID) packed with a vancomycin-modified silica stationary phase. The simultaneous separation of the three couples of the studied enantiomers was achieved in less than 33 min, using an experimentally optimized mobile phase delivered in the isocratic mode. Optimization of the mobile-phase composition was achieved by testing the influence of the buffer pH and concentration, the water concentration, the organic modifier type and concentration, and on the retention and resolution of the analytes. The optimum mobile-phase composition contained 500 mM ammonium acetate pH 4.5/water/MeOH/MeCN, 1:14:40:45 v/v/v/v. Using a UV detector at 205 nm, the method was validated studying several experimental parameters such as LOD and LOQ, intraday and interday repeatability, and linearity. Good results were achieved: LOD and LOQ were in the range 5-15 and 10-40 microg/mL, respectively (the highest value was obtained for the DEMIR enantiomers); correlation coefficients, 0.9993-0.9999; the intraday and interday precision was acceptable (RSD < 2%) using an internal standard. The method was tested for the separation of the studied enantiomers in an extracted (solid-phase) serum sample spiked with standard racemic mixture of MIR and its two metabolites. Finally, the nanoLC system was connected to a mass spectrometer through a nanoelectrospray interface and the MS, MS2, and MS3 spectra were acquired showing the potential of the system used for characterization and identification of the separated analytes.  相似文献   

16.
林小建  龚如金  李平  于建国 《色谱》2014,32(8):880-885
以纤维素-三(3,5-二甲苯基氨基甲酸酯)为手性固定相(Chiralcel OD-H)在高效液相色谱上拆分了氨鲁米特对映体。通过测定氨鲁米特在正己烷/乙醇和正己烷/异丙醇中的溶解度,优选了对样品溶解度大的流动相体系,并考察了流动相添加剂乙醇胺对拆分效果的影响。在此基础上进一步研究了流动相中乙醇含量、柱温和进样量对分离因子、分离度、不对称因子和理论板数的影响,从而确定了最佳的拆分条件:固定相为Chiralcel OD-H,流动相为正己烷/乙醇/乙醇胺(体积比为30:70:0.1),柱温25℃。本文所得结果可为工业放大提供基础数据。  相似文献   

17.
An RP-HPLC method for simultaneous separation and quantification of pantoprazole and its five main impurities in pharmaceutical formulations was developed and validated. The separation was accomplished on a Zorbax Eclipse XDB C18 column (5 microm particle size, 150 x 4.6 mm id) using a gradient with mobile phase A [buffer-acetonitrile (70 + 30, v/v)], and mobile phase B [buffer-acetonitrile (30 + 70, v/v)]. The buffer was 0.01 M ammonium acetate solution with addition of 1 mL triethylamine/L of the solution, adjusted to pH 4.5 with orthophosphoric acid. The eluent flow rate was 1 mL/min, the temperature of the column was 30 degrees C, and the eluate was monitored at 290 nm. Linearity (r = 0.999), recovery (97.6-105.8%), RSD (0.55-1.90%), and LOQ (0.099-1.48 microg/mL) were evaluated and found to be satisfactory. The proposed method can be used for simultaneous identification and quantification of the analyzed compounds in pharmaceutical formulations.  相似文献   

18.
A novel, fast and sensitive enantioselective HPLC assay with a new core–shell isopropyl carbamate cyclofructan 6 (superficially porous particle, SPP) chiral column (LarihcShell-P, LSP) was developed and validated for the enantiomeric separation and quantification of verapamil (VER) in rat plasma. The polar organic mobile phase composed of acetonitrile/methanol/trifluoroacetic acid/triethylamine (98:2:0.05: 0.025, v/v/v/v) and a flow rate of 0.5 mL/min was applied. Fluorescence detection set at excitation/emission wavelengths 280/313 nm was used and the whole analysis process was within 3.5 min, which is 10-fold lower than the previous reported HPLC methods in the literature. Propranolol was selected as the internal standard. The S-(−)- and R-(+)-VER enantiomers with the IS were extracted from rat plasma by utilizing Waters Oasis HLB C18 solid phase extraction cartridges without interference from endogenous compounds. The developed assay was validated following the US-FDA guidelines over the concentration range of 1–450 ng/mL (r2 ≥ 0.997) for each enantiomer (plasma) and the lower limit of quantification was 1 ng/mL for both isomers. The intra- and inter-day precisions were not more than 11.6% and the recoveries of S-(−)- and R-(+)-VER at all quality control levels ranged from 92.3% to 98.2%. The developed approach was successfully applied to the stereoselective pharmacokinetic study of VER enantiomers after oral administration of 10 mg/kg racemic VER to Wistar rats. It was found that S-(−)-VER established higher Cmax and area under the concentration-time curve (AUC) values than the R-(+)-enantiomer. The newly developed approach is the first chiral HPLC for the enantiomeric separation and quantification of verapamil utilizing a core–shell isopropyl carbamate cyclofructan 6 chiral column in rat plasma within 3.5 min after solid phase extraction (SPE).  相似文献   

19.
A sulfated beta-cyclodextrin (sulfated beta-CD)-mediated capillary electrophoresis method is described for the enantioseparation of cetirizine using achiral cefazolin as an internal standard. The enantioseparation of the drug was performed in a borate buffer (5 mM, pH 8.7) with 1% sulfated beta-CD (w/v) as chiral selector at 10 kV. Several parameters affecting the separation were studied, including the pH and the concentration of borate buffer and chiral selector. Under optimized conditions, a baseline separation of two enantiomers was achieved in less than 7 min. Using cefazolin as an internal standard (IS), the linear range of the method for the determination of levocetirizine was over 1.0 to 50.0 microg/mL; the detection limit (signal-to-noise ratio = 3) of levocetirizine was 0.5 microg/mL. The method allowed the enantioseparation of cetirizine in bulk samples and enantiomeric purity evaluation of levocetirizine (R-enantiomer) in pharmaceutical tablets (Xyzal), and it was also found to be suitable for enantioseparation in human plasma.  相似文献   

20.
A simple stereoselective high performance liquid chromatographic method was developed for the determination of the in vitro transport of the enantiomers of nateglinide (N-(trans-4-isopropylcyclohexyl-carbonyl)-phenylalanine) in the rat intestine using a Chiralcel OJ-RH column (150 x 4.0 mm, 5 microm). The effects of the mobile phase composition, pH, the flow rate, and the temperature on the chromatographic separation were investigated. The enantioseparation was achieved at 33 degrees C using a mobile phase containing 100 mM potassium dihydrogen phosphate, pH 2.5, and ACN (32:68 v/v) delivered at a flow rate of 1 mL/min. The analytes were monitored at 210 nm and linearity (r >0.99) was obtained for a concentration range of 0.5-50 microg/mL. The LOD and LOQ were 0.2 and 0.5 microg/mL for the R-enantiomer and 0.2 and 0.8 microg/mL for the S-enantiomer, respectively. Both, the intra- and interday accuracy and precision of the calibration curves were determined. The method was successfully applied to estimate the in vitro passage of the enantiomers and the racemate of nateglinide in duodenum, jejunum, and ileum of rats. Generally, higher concentrations of nateglinide and the S-enantiomer were observed when the racemate was administered compared to administration of the individual enantiomers of nateglinide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号