首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The goal of this study is to evaluate the effect of mass lumping on the dispersion properties of four finite‐element velocity/surface‐elevation pairs that are used to approximate the linear shallow‐water equations. For each pair, the dispersion relation, obtained using the mass lumping technique, is computed and analysed for both gravity and Rossby waves. The dispersion relations are compared with those obtained for the consistent schemes (without lumping) and the continuous case. The P0?P1, RT0 and P?P1 pairs are shown to preserve good dispersive properties when the mass matrix is lumped. Test problems to simulate fast gravity and slow Rossby waves are in good agreement with the analytical results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
This paper provides a comparison of five finite element pairs for the shallow water equations. We consider continuous, discontinuous and partially discontinuous finite element formulations that are supposed to provide second‐order spatial accuracy. All of them rely on the same weak formulation, using Riemann solver to evaluate interface integrals. We define several asymptotic limit cases of the shallow water equations within their space of parameters. The idea is to develop a comparison of these numerical schemes in several relevant regimes of the subcritical shallow water flow. Finally, a new pair, using non‐conforming linear elements for both velocities and elevation (P?P), is presented, giving optimal rates of convergence in all test cases. P?P1 and P?P1 mixed formulations lack convergence for inviscid flows. P?P2 pair is more expensive but provides accurate results for all benchmarks. P?P provides an efficient option, except for inviscid Coriolis‐dominated flows, where a small lack of convergence is observed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
This paper is devoted to the development of accurate high‐order interpolating schemes for semi‐Lagrangian advection. The characteristic‐Galerkin formulation is obtained by using a semi‐Lagrangian temporal discretization of the total derivative. The semi‐Lagrangian method requires high‐order interpolators for accuracy. A class of ??1 finite‐element interpolating schemes is developed and two semi‐Lagrangian methods are considered by tracking the feet of the characteristic lines either from the interpolation or from the integration nodes. Numerical stability and analytical results quantifying the amount of artificial viscosity induced by the two methods are presented in the case of the one‐dimensional linear advection equation, based on the modified equation approach. Results of test problems to simulate the linear advection of a cosine hill illustrate the performance of the proposed approach. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
The purpose of the present paper is to evaluate very‐high‐order upwind schemes for the direct numerical simulation (DNS ) of compressible wall‐turbulence. We study upwind‐biased (UW ) and weighted essentially nonoscillatory (WENO ) schemes of increasingly higher order‐of‐accuracy (J. Comp. Phys. 2000; 160 :405–452), extended up to WENO 17 (AIAA Paper 2009‐1612, 2009). Analysis of the advection–diffusion equation, both as Δx→0 (consistency), and for fixed finite cell‐Reynolds‐number ReΔx (grid‐resolution), indicates that the very‐high‐order upwind schemes have satisfactory resolution in terms of points‐per‐wavelength (PPW ). Computational results for compressible channel flow (Re∈[180, 230]; M?CL ∈[0.35, 1.5]) are examined to assess the influence of the spatial order of accuracy and the computational grid‐resolution on predicted turbulence statistics, by comparison with existing compressible and incompressible DNS databases. Despite the use of baseline Ot2) time‐integration and Ox2) discretization of the viscous terms, comparative studies of various orders‐of‐accuracy for the convective terms demonstrate that very‐high‐order upwind schemes can reproduce all the DNS details obtained by pseudospectral schemes, on computational grids of only slightly higher density. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
In the present paper, a numerical method for the computation of time‐harmonic flows, using the time‐linearized compressible Reynolds‐averaged Navier–Stokes equations is developed and validated. The method is based on the linearization of the discretized nonlinear equations. The convective fluxes are discretized using an O(Δx) MUSCL scheme with van Leer flux‐vector‐splitting. Unsteady perturbations of the turbulent stresses are linearized using a frozen‐turbulence‐Reynolds‐number hypothesis, to approximate eddy‐viscosity perturbations. The resulting linear system is solved using a pseudo‐time‐marching implicit ADI‐AF (alternating‐directions‐implicit approximate‐factorization) procedure with local pseudo‐time‐steps, corresponding to a matrix‐successive‐underrelaxation procedure. The stability issues associated with the pseudo‐time‐marching solution of the time‐linearized Navier–Stokes equations are discussed. Comparison of computations with measurements and with time‐nonlinear computations for 3‐D shock‐wave oscillation in a square duct, for various back‐pressure fluctuation frequencies (180, 80, 20 and 10 Hz), assesses the shock‐capturing capability of the time‐linearized scheme. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
The Q2/P1, P/P1, P2/P0 and Q1/P0 velocity–pressure mixed elements are extended to the stress–velocity–pressure formulation, using the same interpolants for stress and velocity, and tested in the 4-to-1 contraction problem for Stokes flow. The comparison shows significant differences among them, which are not present when the velocity–pressure formulation is used. To provide a better understanding of the phenomenon, several variants of the previous elements are introduced, obtained by either changing the pressure space or by enriching the stress space with bubble functions. The formulation exhibits a strong sensitivity to the first alternative, while the second produces only a minor effect. These observations are confirmed by a convergence test effected on a regular problem with the explicit analytical solution. Also, as a result of the whole comparison, the P/P/P1 element looks promising for three-field calculations.  相似文献   

7.
Within multivariant elements, which have restricted degrees of freedom at some nodes, different velocity components have different variations. Shape functions for the multivariant elements Q Po and R Po are developed. With such shape functions the value of a velocity component within a multivariant element is shown to depend upon all the independent components of velocity at the nodes of the element. The use of the Q1 P0 element to simulate flows with discontinuous boundary conditions generated disturbance throughout the flow domain, giving erroneous pressure and velocity distributions. The Q Po element restricted the disturbance due to such discontinuities to a small region near the singular points, whereas the P Po element completely eliminated the fluctuations. Flows with discontinuous boundary conditions were simulated with reasonable accuracy by partially relaxing the no-slip condition on the Q1 Po elements near the singular points.  相似文献   

8.
This study deals with the Reynolds‐averaged Navier–Stokes simulation of evaporation in a turbulent gas–liquid flow in a three‐dimensional duct, focussing on the results obtained by a four‐equation turbulence model within the framework of the Euler/Euler approach for multiphase flow calculations: in addition to the two‐equation k?ε model describing the turbulence of the continuous (C) phase, the computational model employs transport equations for the turbulence kinetic energy of the disperse (D) phase and for the velocity covariance q=〈{u}D{u}CD. In the present study, the evaporation model according to Abramzon and Sirignano (Int. J. Heat Mass Transfer 1989; 32 :1605–1618) has been extended by introducing an additional transport equation for a newly defined quantity ā, defined as the phase‐interface surface fraction. This allows the change in the drop diameter to be quantified in terms of a probability density function. The source term in the equation describing the dynamics of the volumetric fraction of the dispersed phase αD is related to the evaporation time scale τΓ. The performance of the new model is evaluated by performing a comparative analysis of the results obtained by simulating a polydispersed spray in a three‐dimensional duct configuration with the results of the Euler/Lagrange calculations performed in parallel. Prior to these calculations, some selected (solid) particle‐laden flow configurations were computationally examined with respect to the validation of the background, four‐equation, eddy‐viscosity‐based turbulence model. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
In previous studies, the moment‐of‐fluid interface reconstruction method showed dramatic accuracy improvements in static and pure advection tests over existing methods, but this did not translate into an equivalent improvement in volume‐tracked multimaterial incompressible flow simulation using low‐order finite elements. In this work, the combined effects of the spatial discretization and interface reconstruction in flow simulation are examined. The mixed finite element pairs, Q1Q0 (with pressure stabilization) and Q2P ? 1 are compared. Material order‐dependent and material order‐independent first and second‐order accurate interface reconstruction methods are used. The Q2P ? 1 elements show significant improvements in computed flow solution accuracy for single material flows but show reduced convergence using element‐average piecewise constant density and viscosity in volume‐tracked simulations. In general, a refined Q1Q0 grid, with better material interface resolution, provided an accuracy similar to the Q2P ? 1 element grid with a comparable number of degrees of freedom. Moment‐of‐fluid shows more benefit from the higher‐order accurate flow simulation than the LVIRA, Youngs', and power diagram interface reconstruction methods, especially on unstructured grids, but does not recover the dramatic accuracy improvements it has shown in advection tests. Published 2012. This article is a US Government work and is in the public domain in the USA.  相似文献   

10.
We are concerned with the numerical computation of progressive free surface gravity waves on a horizontal bed. They are regarded as families of bifurcation branches (λ,A)Q of constant discharge Q. Numerically we determine two transition values Q1 and Q2 with corresponding transition bifurcation branches that classify waves into three disjoint branch sets B1, B2 and B3. Their members are families of waves (λ,A)Q satisfying the conditions 0<Q2 ?Q, Q <Q2 ?Q and Q <Q2 <B/27, respectively. The bifurcation patterns are analysed in some detail from the computed bifurcation diagram, which shows that in B1 bifurcation is to the left and the amplitude A increases as the wavelength λ decreases; in B2 bifurcation is to the right and turning points are observed nearly at breaking point. In B3 bifurcation is to the right and A increases monotonically with λ.  相似文献   

11.
The appearance of spurious pressure modes in early shallow‐water (SW) models has resulted in two common strategies in the finite element (FE) community: using mixed primitive variable and generalized wave continuity equation (GWCE) formulations of the SW equations. One FE scheme in particular, the P ? P1 pair, combined with the primitive equations may be advantageously compared with the wave equation formulations and both schemes have similar data structures. Our focus here is on comparing these two approaches for a number of measures including stability, accuracy, efficiency, conservation properties, and consistency. The main part of the analysis centres on stability and accuracy results via Fourier‐based dispersion analyses in the context of the linear SW equations. The numerical solutions of test problems are found to be in good agreement with the analytical results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper we study the stability and approximability of the ??1–??0 element (continuous piecewise linear for the velocity and piecewise constant for the pressure on triangles) for Stokes equations. Although this element is unstable for all meshes, it provides optimal approximations for the velocity and the pressure in many cases. We establish a relation between the stabilities of the ??1–??0 element (bilinear/constant on quadrilaterals) and the ??1–??0 element. We apply many stability results on the ??1–??0 element to the analysis of the ??1–??0 element. We prove that the element has the optimal order of approximations for the velocity and the pressure on a variety of mesh families. As a byproduct, we also obtain a basis of divergence‐free piecewise linear functions on a mesh family on squares. Numerical tests are provided to support the theory and to show the efficiency of the newly discovered, truly divergence‐free, ??1 finite element spaces in computation. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, we present a class of high‐order accurate cell‐centered arbitrary Lagrangian–Eulerian (ALE) one‐step ADER weighted essentially non‐oscillatory (WENO) finite volume schemes for the solution of nonlinear hyperbolic conservation laws on two‐dimensional unstructured triangular meshes. High order of accuracy in space is achieved by a WENO reconstruction algorithm, while a local space–time Galerkin predictor allows the schemes to be high order accurate also in time by using an element‐local weak formulation of the governing PDE on moving meshes. The mesh motion can be computed by choosing among three different node solvers, which are for the first time compared with each other in this article: the node velocity may be obtained either (i) as an arithmetic average among the states surrounding the node, as suggested by Cheng and Shu, or (ii) as a solution of multiple one‐dimensional half‐Riemann problems around a vertex, as suggested by Maire, or (iii) by solving approximately a multidimensional Riemann problem around each vertex of the mesh using the genuinely multidimensional Harten–Lax–van Leer Riemann solver recently proposed by Balsara et al. Once the vertex velocity and thus the new node location have been determined by the node solver, the local mesh motion is then constructed by straight edges connecting the vertex positions at the old time level tn with the new ones at the next time level tn + 1. If necessary, a rezoning step can be introduced here to overcome mesh tangling or highly deformed elements. The final ALE finite volume scheme is based directly on a space–time conservation formulation of the governing PDE system, which therefore makes an additional remapping stage unnecessary, as the ALE fluxes already properly take into account the rezoned geometry. In this sense, our scheme falls into the category of direct ALE methods. Furthermore, the geometric conservation law is satisfied by the scheme by construction. We apply the high‐order algorithm presented in this paper to the Euler equations of compressible gas dynamics as well as to the ideal classical and relativistic magnetohydrodynamic equations. We show numerical convergence results up to fifth order of accuracy in space and time together with some classical numerical test problems for each hyperbolic system under consideration. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
A new family of locally conservative cell‐centred flux‐continuous schemes is presented for solving the porous media general‐tensor pressure equation. A general geometry‐permeability tensor approximation is introduced that is piecewise constant over the subcells of the control volumes and ensures that the local discrete general tensor is elliptic. A family of control‐volume distributed subcell flux‐continuous schemes are defined in terms of the quadrature parametrization q (Multigrid Methods. Birkhauser: Basel, 1993; Proceedings of the 4th European Conference on the Mathematics of Oil Recovery, Norway, June 1994; Comput. Geosci. 1998; 2 :259–290), where the local position of flux continuity defines the quadrature point and each particular scheme. The subcell tensor approximation ensures that a symmetric positive‐definite (SPD) discretization matrix is obtained for the base member (q=1) of the formulation. The physical‐space schemes are shown to be non‐symmetric for general quadrilateral cells. Conditions for discrete ellipticity of the non‐symmetric schemes are derived with respect to the local symmetric part of the tensor. The relationship with the mixed finite element method is given for both the physical‐space and subcell‐space q‐families of schemes. M‐matrix monotonicity conditions for these schemes are summarized. A numerical convergence study of the schemes shows that while the physical‐space schemes are the most accurate, the subcell tensor approximation reduces solution errors when compared with earlier cell‐wise constant tensor schemes and that subcell tensor approximation using the control‐volume face geometry yields the best SPD scheme results. A particular quadrature point is found to improve numerical convergence of the subcell schemes for the cases tested. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
M = 2.25 shock‐wave/turbulent‐boundary‐layer interactions over a compression ramp for several angles (8, 13 and 18°) at Reynolds‐number Re=7 × 103 were simulated with three low‐Reynolds second‐moment closures and a linear low‐Reynolds standard k–ε model. A detailed assessment of the turbulence closures by comparison with both mean‐flow and turbulent experimental quantities is presented. The Reynolds‐stress model which is wall‐topology free and which uses an optimized redistribution closure, is in good agreement with experimental data both for wall‐pressure and mean‐velocity profiles. Detailed analysis of three components of the Reynolds‐stress tensor (comparison with measurements and transport‐equation budgets) provides a critical evaluation of full Reynolds‐stress models for the separated supersonic compression ramp. The discrepancy observed in the shock‐wave foot region, between computations and measurements for the Reynolds‐stresses profiles, could be explained by considering the experimental shock‐wave oscillation and directions for future modelling work are indicated. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
A simplified version of the v2f model is proposed that accounts for the distinct effects of low‐Reynolds number and near‐wall turbulence. It incorporates modified Cε(1,2) coefficients to amplify the level of dissipation in non‐equilibrium flow regions, thus reducing the kinetic energy and length scale magnitudes to improve prediction of adverse pressure gradient flows, involving flow separation and reattachment. Unlike the conventional v2f, it requires one additional equation (i.e. the elliptic equation for the elliptic relaxation parameter fµ) to be solved in conjunction with the k–ε model. The scaling is evaluated from k in collaboration with an anisotropic coefficient Cv and fµ. Consequently, the model needs no boundary condition on and avoids free stream sensitivity. The model is validated against a few flow cases, yielding predictions in good agreement with the direct numerical simulation (DNS) and experimental data. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
A new stabilized finite element method is considered for the time‐dependent Stokes problem, based on the lowest‐order P1?P0 and Q1?P0 elements that do not satisfy the discrete inf–sup condition. The new stabilized method is characterized by the features that it does not require approximation of the pressure derivatives, specification of mesh‐dependent parameters and edge‐based data structures, always leads to symmetric linear systems and hence can be applied to existing codes with a little additional effort. The stability of the method is derived under some regularity assumptions. Error estimates for the approximate velocity and pressure are obtained by applying the technique of the Galerkin finite element method. Some numerical results are also given, which show that the new stabilized method is highly efficient for the time‐dependent Stokes problem. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
The combination of a high‐order unstructured spectral difference (SD) spatial discretization scheme with sub‐grid scale (SGS) modeling for large‐eddy simulation is investigated with particular focus on the consistent implementation of a structural mixed model based on the scale similarity hypothesis. The difficult task of deriving a consistent formulation for the discrete filter within the SD element of arbitrary order led to the development of a new class of three‐dimensional constrained discrete filters. The discrete filters satisfy a set of selected criteria and are completely local within the SD element. Their weights can be automatically computed at run time from the number of solution points within each element and the expected filter cutoff length scale. The novel discrete filters can be applied to any SGS model involving explicit filtering and to a broad class of high‐order discontinuous finite element numerical schemes. The code is applied to the computation of turbulent channel flows at three Reynolds numbers, namely Reτ = 180, 395, and 590 (based on the friction velocity uτ and channel half‐width δ). Results from computations with and without the SGS model are compared against results from direct numerical simulation. The numerical experiments suggest that the results are sensitive to the use of the SGS model, even when a high‐order numerical scheme is used, especially when the grid resolution is kept relatively low and mostly in terms of resolved Reynolds stresses. Results obtained using existing filters based on the projection of the solution over lower‐order polynomial bases are also shown and demonstrate that these filters are inadequate for SGS modeling purposes, mostly because of their inability to enforce the selected cutoff length scale with sufficient accuracy. The use of the similarity mixed formulation proved to be particularly accurate in reproducing SGS interactions, confirming that its well‐known potential can be realized in conjunction with state‐of‐the‐art high‐order numerical schemes.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, a new mathematical framework based on h, p, k and variational consistency (VC) of the integral forms is utilized to develop a finite element computational process of two‐dimensional polymer flows utilizing Oldroyd‐B constitutive model. Alternate forms of the choices of dependent variables in the governing differential equations (GDEs) are considered and is concluded that u, v, p, τ choice yielding strong form of the GDEs is meritorious over others. It is shown that: (a) since, the differential operator in the GDEs is non‐linear, Galerkin method and Galerkin method with weak form are variationally inconsistent (VIC). The coefficient matrices in these processes are non‐symmetric and hence may have partial or completely complex basis and thus the resulting computational processes may be spurious. (b) Since the VC of the VIC integral forms cannot be restored through any mathematically justifiable means, the computational processes in these approaches always have possibility of spurious solutions. (c) Least squares process utilizing GDEs in u, v, p, τ (strong form of the GDEs) variables (as well as others) is variationally consistent. The coefficient matrices are always symmetric and positive definite and hence always have a real basis and thus naturally yield computational processes that are free of spurious solutions. (d) The theoretical solution of the GDEs are generally of higher order global differentiability. Numerical simulations of such solutions in which higher order global differentiability characteristics of the theoretical solution are preserved, undoubtedly requires local approximations in higher order scalar product spaces . (e) LSP with local approximations in spaces provide an incomparable mathematical and computational framework in which it is possible to preserve desired characteristics of the theoretical solution in the computational process. Numerical studies are presented for fully developed flow between parallel plates and a lid driven square cavity. M1 fluid is used in all numerical studies. The range of applicability of the Oldroyd‐B model or lack of it is examined for both model problems for increasing De. A mathematical idealization of the corners where stationary wall meets the lid is presented and is shown to simulate the real physics when the local approximations are in higher order spaces and when hd→0. For both model problems shear rate is examined in the flow domain to establish validity of the Oldroyd‐B constitutive model. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
A perturbation solution of the fully developed flow through a pipe of circular cross-section, which rotates uniformly around an axis oriented perpendicularly to its own, is considered. The perturbation parameter is given by R = 2Ωa2/ν in terms of the angular velocity Ω, the pipe radius a and the kinematic viscosity ν of the fluid. The two coupled non-linear equations for the axial velocity ω and the streamfunction ? of the transverse (secondary) flow lead to an infinite system of linear equations. This system allows first the computation of a given order ?n, n ? 1, of the perturbation expansion ? = ∑ Rn?n in terms of ωn-1, the (n-1)-th order of the expansion ω = ∑ Rnωn, and of the lower orders ?1,…,?n ? 1. Then it permits the computation of ωn from ω0,…,ωn ? 1 and ?1,…,?;n. The computation starts from the Hagen–Poiseuille flow ω0, i.e. the perturbation is around this flow. The computations are performed analytically by computer, with the REDUCE and MAPLE systems. The essential elements for this are the appropriate co-ordinates: in the complex co-ordinates chosen the two-dimensional harmonic (Laplace, Δ) and biharmonic (Δ2) operators are ideally suited for (symbolic) quadratures. Symmetry considerations as well as analysis of the equations for ωn, ?n and of the boundary conditions lead to general (polynomial) formulae for these functions, with coeffcients to be determined. Their determination, order by order, implies, in complex co-ordinates, only (symbolic) differentiation and quadratures. The coefficients themselves are polynomials in the Reynolds number c of the (unperturbed) Hagen–Poiseuille flow. They are tabulated in the paper for the orders n ? 6 of the perturbation expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号