首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
The evolution of single elliptic vortex rings for initial aspect ratio (AR)=2,4,6 has been studied. The incompressible Navier-Stokes equations are solved by a dealiased pseudo-spectral method with 643 grid points in a periodic cube. We find that there are three kinds of vortex motion asAR increases and bifurcation occurs at certainAR. The processes of advection, interaction and decay of vortex ring are discussed. Numerical results coincide with experiments and other authors' numerical simulation. The project is supported by National Natural Science Foundation of China and Doctoral Program of Institution of Higher Education  相似文献   

2.
The evolution of wake structures and variation of the forces on a flat plate in harmonic oscillatory and in-line combined flows are obtained numerically by improved discrete vortex method. For the oscillatory oncoming flow cases, wyenKc number varies from 2 to 40, the vortex pattern changes from a “harmonic wave” shaped (in a range of smallKc number) to a slight inclined “harmonic wave” shaped (in a range of moderateKc numbers), then to inclined vortex clusters with an angle of 50° to the oncoming flow direction (atKc=20), at last, asKc number becomes large, the vortex pattern is like a normal Karman vortex street. The well predicted drag and inertia force coefficients are obtained, which are more close to the results of Keulegan & Carpenter's experiment as compared with previous vortex simulation by other authors. The existence of minimum point of inertia force coefficientC m nearKc=20 is also well predicted and this phenomenon can be interpreted according to the vortex structure. For steady-oscillatory in-line combined flow cases, the vortex modes behave like a vortex street, exhibit a “longitudinal wave” structure, and a vortex cluster shape corresponding to the ratios ofU m toU 0 which are ofO (10−1)O(1) andO(10), respectively. The effect on the prediction of forces on the flat plate from the disturbance component in a combined flow has been demonstrated qualitatively. In addition to this, the lock in phenomenon of vortex shedding has been checked. The project supported by National Natural Science Foundation of China & LNM, Institute of Mechanics, CAS  相似文献   

3.
The solution of the Poisson's equation used by the incompressible smoothed particle hydrodynamics (ISPH) methods for estimating the pressure field is expensive in CPU time. The CPU time, consumed by the inversion of the operator ∇(1/ρ∇) and the estimation of the right hand side of the Poisson's equation, increases with the number N of particles used in a purely Lagrangian framework. In this work, this default of ISPH methods is overcome by solving the Poisson's equation on a Cartesian grid. This SPH-mesh coupling is equivalent to the particle in cell method. In a first step, in order to analyze its efficiency, the optimized version of two ISPH methods (divergence free and density invariant) is compared with the standard weakly compressible SPH method through two benchmarks of incompressible bidimensional flows characterized by the Reynolds number Re, Lamb-Oseen vortex (10 ≤Re≤ 100) and lid-driven cavity flow (100 ≤Re≤ 1000). In a second step, the numerical results obtained by the three SPH methods are compared to laboratory experimental data of a dam break flow in order to show the performance of the SPH-mesh coupling in a practical and complex flow problem. As in the configuration of the experimental setup, the numerical results are obtained for a Reynolds number Re = 3.8 106.  相似文献   

4.
A vortex ring impinging on a three-dimensional bump is studied using large eddy simulation for a Reynolds number Re = 4 × 104 based on the initial translation speed and diameter of the vortex ring. The effects of bump height on the vortical flow phenomena and the underlying physical mechanisms are investigated. Based on the analysis of the evolution of vortical structures, two typical kinds of vortical structures, i.e., the wrapping vortices and the hair-pin vortices, are identified and play an important role in the flow state evolution. The circulation of the primary vortex ring reasonably elucidates some typical phases of flow evolution. Furthermore, the mechanism of flow transition from laminar to turbulent state has been revealed based on analysis of turbulent kinetic energy.  相似文献   

5.
An operator splitting and element‐by‐element conjugated gradient solver, and equal order interpolations are applied for solving time dependent Navier–Stokes (NS) equations to simulate flow induced vortex shedding in the present study. In addition, the convection term is corrected by balanced tensor diffusivity, which can stabilize the numerical simulation and overcome the numerical oscillations. The evolution of the interested flowing properties with time is analyzed by using spectral analysis. The developed code has been validated by the application of two examples: a driven cavity flow and a flow induced vortex vibration. Results from the first example for Reynolds number Re=103 and Re=104 are compared with other numerical simulations. Results from the second example, uniform flow past a square rod over a wide range of high Reynolds numbers from Re=103~105, are compared with experimental data and other numerical studies. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
A self-adaptive-grid method is applied to numerical simulation of the evolution of aircraft wake vortex with the large eddy simulation(LES). The Idaho Falls(IDF)measurement of run 9 case is simulated numerically and compared with that of the field experimental data. The comparison shows that the method is reliable in the complex atmospheric environment with crosswind and ground effect. In addition, six cases with different ambient atmospheric turbulences and Brunt V¨ais¨al¨a(BV) frequencies are computed with the LES. The main characteristics of vortex are appropriately simulated by the current method. The onset time of rapid decay and the descending of vortices are in agreement with the previous measurements and the numerical prediction. Also, secondary structures such as baroclinic vorticity and helical structures are also simulated.Only approximately 6 million grid points are needed in computation with the present method, while the number can be as large as 34 million when using a uniform mesh with the same core resolution. The self-adaptive-grid method is proved to be practical in the numerical research of aircraft wake vortex.  相似文献   

7.
This paper focuses on the assessment of a discontinuous Galerkin method for the simulation of vortical flows at high Reynolds number. The Taylor–Green vortex at Re = 1600 is considered. The results are compared with those obtained using a pseudo‐spectral solver, converged on a 5123 grid and taken as the reference. The temporal evolution of the dissipation rate, visualisations of the vortical structures and the kinetic energy spectrum at the instant of maximal dissipation are compared to assess the results. At an effective resolution of 2883, the fourth‐order accurate discontinuous Galerkin method (DGM) solution (p = 3) is already very close to the pseudo‐spectral reference; the error on the dissipation rate is then essentially less than a percent, and the vorticity contours at times around the dissipation peak overlap everywhere. At a resolution of 3843, the solutions are indistinguishable. Then, an order convergence study is performed on the slightly under‐resolved grid (resolution of 1923). From the fourth order, the decrease of the error is no longer significant when going to a higher order. The fourth‐order DGM is also compared with an energy conserving fourth‐order finite difference method (FD4). The results show that, for the same number of DOF and the same order of accuracy, the errors of the DGM computation are significantly smaller. In particular, it takes 7683 DOF to converge the FD4 solution. Finally, the method is also successfully applied on unstructured high quality meshes. It is found that the dissipation rate captured is not significantly impacted by the element type. However, the element type impacts the energy spectrum in the large wavenumber range and thus the small vortical structures. In particular, at the same resolution, the results obtained using a tetrahedral mesh are much noisier than those obtained using a hexahedral mesh. Those obtained using a prismatic mesh are already much better, yet still slightly noisier. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Heng Ren  Xiyun Lu 《力学快报》2013,3(3):032007
A vortex ring impacting a three-dimensional circular cylinder is studied using large eddy simulation (LES) for a Reynolds number Re = 4 × 104 based on the initial translation speed and diameter of the vortex ring. We have investigated the evolution of vortical structures and identified three typical evolution phases. When the primary vortex closely approaches to the cylinder, a secondary vortex is generated and its segment parts move inward to the primary vortex ring. then two large-scale loop-like vortices are formed to evolve in opposite directions. Thirdly, the two loop-like vortices collide with each other to form complicated small-scale vortical structures. Moreover, a series of hair-pin vortices are generated due to the stretching and deformation of the tertiary vortex. The trajectories of vortical structures and the relevant evolution speeds are analyzed. The total kinetic energy and enstrophy are investigated to reveal their properties relevant to the three evolution phases.  相似文献   

9.
传统CFD方法在振动钝体绕流计算中常借助动网格技术,网格再生任务繁重。针对于此,本文利用可在静止网格中计算动边界绕流问题的浸入边界算法(IBM),编写数值模拟程序,分别对竖向强迫正弦振动方柱(Re=UD/v=103、振幅恒定、振动频率变化)以及桥梁断面(Re=UB/v=7.5×103、振幅、振动频率均变化)展开气动特性和流场特征结构分析。初步研究结果表明,振幅恒定为方柱高度的14%时,其涡脱锁定区长度为0.06~0.2,锁定区后端(Stc0.2)振动方柱涡脱频率回归静止涡脱频率;不同振幅下的桥梁断面阻力系数均在静止涡脱频率处产生峰值,桥梁断面升力系数则在此处均出现归零效应,且振幅越大,归零效应愈明显。  相似文献   

10.
Recent contributions to the 3-D vortex method for bluff-body flows are presented. The numerical method--a vortex method combined with a boundary element method--is briefy reviewed. It is applied to direct numerical simulation (DNS) of the flow past a sphere (Re= 300, 500 and 1000). The on-going work to extend the method towards vortex-based large-eddy simulation (LES) for high Reynolds number flows is also presented. Preliminary results for the flow past a hemisphere are discussed.  相似文献   

11.
The axisymmetric vortex sheet model developed by Nitsche & Krasny (1994) has been extended to study the formation of vortex rings (pairs) at the edge of circular (2D) tube and opening. Computations based on this model are in good agreement with the experiments (Didden (1979) for circular tube and Auerbach (1987) for 2D tube and opening). Using this new model, evidences are provided to show that the main failure of the similarity theory (the false prediction of axial trajectory of vortex ring) is due to its ignorance of the self-induced ring velocity (mutual induction for vortex pair). We further reason why the similarity theory succeeds in its prediction of radial movement of vortex ring. The effects of various parameters such as turning angle α and piston speedU p (t) on the formation of vortex ring are investigated. Numerical result shows that turning angle α has no effect on circulation shed τ. We also discuss Glezer (1988)'s summary on the influence ofU p upon the shedding circulation, and finally give the variation of core distribution of vortex ring with α andU p (t). The project is supported by National Natural Science Foundation of China and Doctoral Program of Institution of Higher Education  相似文献   

12.
The present study develops a 2‐D numerical scheme that combines the vortex method and the boundary integral method by a Helmholtz decomposition to investigate the interaction of water waves with submerged obstacles. Viscous effects and generation of vorticity on the free surface are neglected. The second kind of Fredholm integral equations that govern the strengths of vortex sheets along boundaries are solved iteratively. Vorticity is convected and diffused in the fluid via a Lagrangian vortex (blob) method with varying cores, using the particle strength exchange method for diffusion, with particle redistribution. A grid‐convergence study of the numerical method is reported. The inviscid part of the method and the simulation of the free‐surface motion are tested using two calculations: solitary wave propagation in a uniform channel and a moving line vortex in the fluid. Finally, the full model is verified by simulating periodic waves travelling over a submerged rectangular obstacle using nonuniform vortex blobs with a mapping of the redistribution lattice. Overall, the numerical model predicts the vortices' evolution and the free‐surface motion reasonably well. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
The random vortex method of Chorin1 provides a numerical simulation of high-Reynolds number flow in two dimensions. The method can be used to model the viscous interaction of wind with a surface-mounted obstacle of arbitrary cross-section. In this paper the method has been used to investigate the flow of wind over common building shapes; an inlet profile is chosen to represent the stationary aspects of the atmospheric boundary layer. The evolution of flow over a short time-interval after flow initialization is depicted, and a mean value of pressure coefficient, Cp, is calculated over the building perimeter. Some comparison is made with published wind-tunnel measurements for the case of a surface-mounted square-section block and for a building model with 10° roof pitch.  相似文献   

14.
This paper presents the basis of a numerical method for unsteady aerodynamic computation around thin lifting and/or propulsive systems with arbitrary variable geometries, involving the velocity field, the velocity potential, the pressure field and the wake characteristics (geometry and vortex strength). Most of the corresponding theory actually stems from the unsteady wake model established by Mudry, in which the wake is considered to be a median layer, characterized by a pair of functions on which Mudry founded the concept of continuous vortex particle. The governing relations of the continuous problem are then the flow tangency condition, the wake integro‐differential evolution equation, and a flow regularity condition at the trailing edge. This constitutes a rigorous and complete theoretical formulation of this problem, from which a discretization scheme and a numerical method of solution are derived. The view of the vortex wake is similar to the one in the classical vortex lattice approaches, but uses a discrete vortex particle concept, particularly well suited for the prediction of the unsteady wake deformation. This, together with the continuous theory, ensures the computing method compares favorably with the classical methods in terms of flexibility and computing costs. In order to demonstrate the capabilities of the present method, the calculation of flapping wings of variable geometry is also presented. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
We have used a third-order essentially non-oscillatory method to obtain numerical shadowgraphs for investigation of shock–vortex interaction patterns. To search different interaction patterns, we have tested two vortex models (the composite vortex model and the Taylor vortex model) and as many as 47 parametric data sets. By shock–vortex interaction, the impinging shock is deformed to a S-shape with leading and lagging parts of the shock. The vortex flow is locally accelerated by the leading shock and locally decelerated by the lagging shock, having a severely elongated vortex core with two vertices. When the leading shock escapes the vortex, implosion effect creates a high pressure in the vertex area where the flow had been most expanded. This compressed region spreads in time with two frontal waves, an induced expansion wave and an induced compression wave. They are subsonic waves when the shock–vortex interaction is weak but become supersonic waves for strong interactions. Under a intermediate interaction, however, an induced shock wave is first developed where flow speed is supersonic but is dissipated where the incoming flow is subsonic. We have identified three different interaction patterns that depend on the vortex flow regime characterized by the shock–vortex interaction.   相似文献   

16.
In this paper, we prove a stability result for measure perturbations of some class of stationary distributions of a Vlasov equation. We use this result to prove that the N particles approximation of these stationary distributions is uniformly valid on a time scale of order N 1/8, which is much longer than the usual log N scale. We also prove similar results for the approximation of the two-dimensional Euler equation by the vortex blob method.  相似文献   

17.
超声速平面混合层小激波的形成与演变   总被引:4,自引:2,他引:2  
为了揭示超声速混合层中小激波形成机理及其与涡相互作用的演变过程,本文基于大涡模拟(LES)方法,结合五阶精度混合TCD/WENO格式,对超声速平面混合层在对流马赫数为Mc=0.65条件下的流场结构进行了数值模拟,数值结果详细描述了超声速混合层中小激波的形成过程。研究了小激波形成后,随涡运动而产生的变形、脱落及发展过程。同时,对混合层双涡合并过程中,小激波与相邻涡相互作用所产生的变形与演变过程进行了讨论。  相似文献   

18.
We present two simple and efficient explicit methods for the vortex sheet with surface tension. The first one is the standard point vortex method, which has been known to be unstable in the presence of surface tension, due to spurious growth of waves of high modes. We show, for the first time, that the standard point vortex method is able to calculate the vortex sheet motion with surface tension by employing a Fourier filtering. The second method is a modification of the Pullin method using central differences for numerical differentiations. This method is more convenient to implement than other spectral methods and is free from the aliasing instability. We give a linear stability analysis for the numerical methods and show results for the long‐time evolution of the vortex sheet. We also propose a new redistribution procedure to control point clustering, by setting limits of minimum and maximum distances between neighboring points. This procedure is found to be very efficient for long‐time computations of the explicit methods. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
This paper applies the Hamiltonian approach to the two-dimensional motion of an incompressible fluid on a curvilinear surface. The method has been used to formulate governing equations of motion, and to interpret the evolution of a system consisting of N∼102–103 localized two-dimensional vortices on a sphere. The analysis shows that the instability appears immediately, forming initial disorganized structures which develop and finally `burst'. The system evolves to a few separated vortex `spots' which are quasi-stable.  相似文献   

20.
A finite volume method for the time dependent viscous incompressible flow around an in-line oscillating circular cylinder at Reynolds number of 200, 855 is presented in this paper. The Navier-Stokes equations in a finite volume form are solved with a moving grid system, based on a time dependent coordinate transformation. To investigate the vortex-shedding characteristics behind the circular cylinder and the effects of Reynolds number and other non-dimensional parameters such as reduced amplitude and reduced frequency, several numerical schemes have been tested with different amplitude and frequency close to Sto and a harmonic at each Reynolds number. Present numerical results indicate several types of vortex shedding mode which is known mainly depending on the reduced frequency and also the reduced amplitude, which is called synchronization or lock-on.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号