首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 227 毫秒
1.
《Chemphyschem》2003,4(8):838-842
The vibronic spectrum of the adenine–thymine (A–T) base pair was obtained by one‐color resonant two‐photon ionization (R2PI) spectroscopy in a free jet of thermally evaporated A and T under conditions favorable for formation of small clusters. The onset of the spectrum at 35 064 cm?1 exhibits a large red shift relative to the π–π* origin of 9H‐adenine at 36 105 cm?1. The IR–UV spectrum was assigned to cluster structures with HNH???O?C/N???HN hydrogen bonding by comparison with the IR spectra of A and T monomers and with ab initio calculated vibrational spectra of the most stable A–T isomers. The Watson–Crick A–T base pair is not the most stable base‐pair structure at different levels of ab initio theory, and its vibrational spectrum is not in agreement with the observed experimental spectrum. Experiments with methylated A and T were performed to further support the structural assignment.  相似文献   

2.
High-resolution Resonance Enhanced MultiPhoton Ionization (REMPI) and Laser Induced Fluorescence (LIF) excitation spectra of jet-cooled methyl-4-hydroxycinnamate, methyl-4-OD-cinnamate, and of their water clusters have been recorded. Whereas water complexation leads to significant linewidth narrowing, isotopic substitution does for all practical purposes not influence the excited-state dynamics. In this light, we evaluate two previously proposed decay channels of the photoexcited ππ* state involving the dissociative πσ* state (analogous to phenol) and involving the optically dark nπ* state (as concluded for para-coumaric acid). To come to an unambiguous interpretation of the REMPI studies, it has been necessary to determine ionization thresholds. For methyl-4-hydroxycinnamate and its water cluster values of 8.078 and 7.636 eV have been found. Apart from the electronic excitation studies, IR absorption studies have been performed as well. These studies provide important vibrational markers for the assignment of the various conformations that are present under molecular beam conditions, and offer a direct measure of the influence of hydrogen bonding on the properties of the hydroxyl group.  相似文献   

3.
Ground‐state geometries of benzene on crystalline ice cluster model surfaces (Ih) are investigated. It is found that the binding energies of benzene‐bound ice complexes are sensitive to the dangling features of the binding sites. We used time‐dependent DFT to study the UV spectroscopy of benzene, ice clusters, and benzene–ice complexes, by employing the M06‐2X functional. It is observed that the size of the ice cluster and the dangling features have minor effects on the UV spectral characteristics. Benzene‐mediated electronic excitations of water towards longer wavelengths (above 170 nm) are noted in benzene‐bound ice clusters, where the cross‐section of photon absorption by water is negligible, in good agreement with recent experimental results (Thrower et al., J. Vac. Sci. Technol. A, 2008, 26 , 919–924). The intensities of peaks associated with water excitations in benzene–ice complexes are found to be higher than in isolated ice clusters. The ππ* electronic transition of benzene in benzene–ice complexes undergoes a small redshift compared with the isolated benzene molecule, and this holds for all benzene‐bound ice complexes.  相似文献   

4.
In the present work, a comprehensive theoretical investigation on the excited state properties of the isomorphic emissive RNA nucleobase analogues, namely tzA, tzG, tzC, and tzU, was performed. Vertical transition energies are determined with the time‐dependent density functional theory method at both the B3LYP and CAM‐B3LYP levels using the 6‐311++G(d,p) basis set. The nature of the low‐lying singlet excited states is discussed and the results are compared with the findings from experiment and those for thieno analogues and natural bases. In gas phase, it was found that the S1 state is ππ* in nature for all the tz‐bases except for tzA, for which the S1 state is predicted to be nπ* in nature with the ππ* state being the S2. While in water solution, the S1 state for all tz‐bases are predicted to be ππ* dominated by the configuration HOMO→LUMO. Compared with natural bases, the lowest ππ* states are about 0.85–1.22 eV red‐shifted. When compared with thieno analogues, it is interesting to note that the S1 state (ππ*) transition energies of the two counterparts from the two alphabets are nearly equal due to the very little differences of their HOMO‐LUMO gaps. In addition, it was found that the hydration + PCM model can perfectly reproduce the photophysical properties of the tz‐bases since the calculated excitation maxima and fluorescence are in good agreement with the experimental data. The microenvironment effects of linking to ribose, base pairing, and further hydration of base pairs were also studied.  相似文献   

5.
管清梅  杨忠志 《中国化学》2007,25(6):727-735
A detailed theoretical investigation on Co^3+ hydration in aqueous solution has been carded out by means of molecular dynamics (MD) simulations based on the atom-bond electronegativity equalization method fused into molecular mechanics (ABEEM/MM). The effective Co^3+ ion-water potential has been constructed by fitting to ab initio structures and binding energies for ionic clusters. And then the ion-water interaction potential was applied in combination with the ABEEM-7P water model to molecular dynamics simulations of single Co^3+(aq.) solution, managing to reproduce many experimental structural and dynamical properties of the solution. Here, not only the common properties (radial distribution function, angular distribution function and solvation energy) obtained for Co^3+ in ABEEM-7P water solution were in good agreement with those from the experimental methods and other molecular dynamics simulations but also very interesting properties of charge distributions, geometries of water molecules, hydrogen bond, diffusion coefficients, vibrational spectra are investigated by ABEEM/MM model.  相似文献   

6.
Herein, we report that the conformational preference of phenyl acetate is governed by steric effect and n→π* interaction. Conformation‐specific electronic and IR spectroscopy combined with quantum chemistry calculations confirm the presence of only the cis conformer of phenyl acetate in the experiment. The cis conformer of phenyl acetate has n→π* interaction between the lone‐pair electrons on the carbonyl oxygen atom and the π* orbitals of the phenyl group. The n→π* interaction is absent in the trans conformer which has additional steric repulsion between the methyl group and phenyl ring. The trans conformer is higher in energy than the cis conformer by ≈3 kcal mol?1. We have found the effect of methyl substitution on the strength of the n→π* interaction, steric repulsion, and hyperconjugation in phenyl acetate. The red‐shift observed in the cis conformer of phenyl acetate with respect to the trans conformer is affected due to the influence of the methyl substituent on the strength of the n→π* interaction as well as hyperconjugation. The present result demonstrates that the introduction of a bulkier substituent can induce steric as well as electronic control to reduce conformational heterogeneity of a molecular system. Understanding the effect of bulkier substituents to promote defined conformations having specific non‐covalent interactions may have implication in better perception of the optimum structure and function of biomolecules as well as recognition of drugs by biomolecules.  相似文献   

7.
We employed the complete active space self‐consistent field (CASSCF) and its multistate second‐order perturbation (MS‐CASPT2) methods to explore the photochemical mechanism of 2‐hydroxyazobenzene, the molecular scaffold of Sudan I and Orange II dyes. It was found that the excited‐state intramolecular proton transfer (ESIPT) along the bright diabatic 1ππ* state is barrierless and ultrafast. Along this diabatic 1ππ* relaxation path, the system can jump to the dark 1nπ* state via the 1ππ*/1nπ* crossing point. However, ESIPT in this dark state is largely inhibited owing to a sizeable barrier. We also found two deactivation channels that decay 1ππ* keto and 1nπ* enol species to the ground state via two energetically accessible S1/S0 conical intersections. Finally, we encountered an interesting phenomenon in the excited‐state hydrogen‐bonding strength: it is reinforced in the 1ππ* state, whereas it is reduced in the 1nπ* state. The present work sets the stage for understanding the photophysics and photochemistry of Sudan I–IV, Orange II, Ponceau 2R, Ponceau 4R, and azo violet.  相似文献   

8.
A palladium(II) acetate‐catalyzed synthesis of 1 that utilizes the novel triazene 1‐{4‐[(E)‐morpholin‐4‐yldiazenyl]phenyl}ethanone as a synthon is described. The room temperature absorption spectra of 1 in various solvents exhibited a ππ* transition in the range of 330–350 nm. Compound 1 was observed to be luminescent, with room‐temperature solution and solid‐state emission spectra that exhibited maxima in the range 400–500 nm. All room‐temperature absorption and emission spectra exhibited some degree of vibrational structure. The emission spectrum of 1 at 77 K in propanenitrile glass was broad and featureless with a maximum at 447 nm. Compound 1 crystallized as a yellow and colorless polymorph. X‐Ray structure analyses of both of these polymorphs and 1‐{4‐[(E)‐morpholin‐4‐yldiazenyl]phenyl}ethanone are presented.  相似文献   

9.
Two quanta of the aldehyde H-wag vibrational mode are observed with relatively constant activity in the vibrational structure of 3A″ (nπ*) → 1A′ phosphorescence spectra of benzaldehyde, deuterated benzaldehydes, pyridine aldehydes, p-methylbenzaldehyde, p-fluorobenzaldehyde, and p-chlorobenzaldehyde at 4.2°K in a methylcyclohexane polycrystalline environment. The fundamental is either missing or very weak. Contrasted to the aldehyde H-wag mode, higher quanta of the CHO torsional mode are observed in the phosphorescence of the same molecules with variable intensity and progression length. These results are interpreted in terms of a static (i.e., valence) distortion of the 3nπ potential surface along the aldehyde H-wagging coordinate, and pseudo-Jahn-Teller distortion along the CHO torsional coordinate. The valence distortion is analogous to a distortion found for the 3nπ* state in propynal and its origin probably lies in excess electron density at the carbonyl carbon in the excited state. The dynamical Jahn-Teller distortion is ascribed to vibronic interaction between 3A″ (nπ) and the nearest 3A′(nπ*) states.  相似文献   

10.
The phosphorescence spectra and lifetimes of 2,4-, 2,5-, and 3,4-dimethylbenzaldehydes dispersed in durene single crystals have been measured as a function of temperature between 10 and 200 K. For all the guests involved, the vibrational structures of the spectra are found to be temperature dependent. This is interpreted in terms of two emissions that proceed from a triplet state having predominantly a ππ* character at low temperatures and from a thermally populated triplet state having essentially a nπ* character at higher temperatures. The energy gaps ΔET between 3ππ* and 3nπ* states evaluated spectroscopically are found to be 100, 70, and 340 cm?1, respectively for 2,4-, 2,5- and 3,4-dimethylbenzaldehydes.Activation energies ΔE* determined from the Arrhenius plots of the phosphorescence decay rate constants are in good agreement with the ΔET for the first two guests. In contrast, the ΔE* are higher than the ΔET for 3,4-dimethylbenzaldehydes as well as for 2,4,5-trimethylbenzaldehyde (where ΔET ≈ 400 cm?1) because of the rapid increase of radiationless transitions in the temperature range where thermal population of the upper 3nπ* state is efficient. In the low and high temperature ranges, the phosphorescence decays for all these guests are exponential. In the intermediate range, these decays are non-exponential. The origin of these non-exponential decays is discussed.  相似文献   

11.
State‐of‐the‐art molecular‐beam techniques reveal that the lowest lying electronic excited state in purine is the nπ* state. Using multiphoton ionization spectroscopy, the origin is found to occur at 31 309 cm?1, and a vibrational structure is visible that is assigned to the skeletal motion of the ring (see figure).

  相似文献   


12.
Despite utmost importance in understanding water ionization process, reliable theoretical results of structural changes and molecular dynamics (MD) of water clusters on ionization have hardly been reported yet. Here, we investigate the water cations [(H2O)n = 2–6+] with density functional theory (DFT), Möller–Plesset second‐order perturbation theory (MP2), and coupled cluster theory with single, double, and perturbative triple excitations [CCSD(T)]. The complete basis set limits of interaction energies at the CCSD(T) level are reported, and the geometrical structures, electronic properties, and infrared spectra are investigated. The characteristics of structures and spectra of the water cluster cations reflect the formation of the hydronium cation moiety (H3O+) and the hydroxyl radical. Although most density functionals fail to predict reasonable energetics of the water cations, some functionals are found to be reliable, in reasonable agreement with high‐level ab initio results. To understand the ionization process of water clusters, DFT‐ and MP2‐based Born‐Oppenheimer MD (BOMD) simulations are performed on ionization. On ionization, the water clusters tend to have an Eigen‐like form with the hydronium cation instead of a Zundel‐like form, based on reliable BOMD simulations. For the vertically ionized water hexamer, the relatively stable (H2O)5+ (5sL4A) cluster tends to form with a detached water molecule (H2O). © 2013 Wiley Periodicals, Inc.  相似文献   

13.
Hydroquinone (HYQ) in the lowest electronically excited state has been studied by ab initio quantum chemical calculations and resonant two-photon ionization (R2PI) spectroscopy. Calculations at the MP2/6-31G* and CIS/6-31G* levels yield satisfactory results on structures and vibrational frequencies of the cis-HYQ and trans-HYQ in both the S0 and S1 states. Only transitions involving in-plane modes are observed in the R2PI spectrum of HYQ. All spectral bands including some newly observed ones have been successfully assigned with the help of our computed results and analogy with the reported spectra for similar molecules.  相似文献   

14.
High resolved phosphorescence spectra of xanthone have been recorded in four host matrices in order to study vibronic coupling between the lowest tripl origin in all hosts, and the energetically close-lying second triplet state T2, which is of nπ* orbital origin. In three hosts, there is thermall to phosphorescence from T1. Vibrational analyses of the two emissions are reported. The vibrational structure of both emissions depends little on t vibronic mixing between the lowest two triplet states is weak, in spite of the small energy separation in some hosts. The importance of the different i 1 and its sublevels is discussed, and it is concluded that across energy separations smaller than about 200 cm?1 spin—orbit mixing is more orbital mixing between the 3ππ* and 3nπ* configurations of xanthone.  相似文献   

15.
Knowledge of the geometric and electronic structure of gold clusters and nanoparticles is vital for understanding their catalytic and photochemical properties at the molecular level. In this study, we report the vibronic optical photodissociation spectrum of cold and mass‐selected Au4+ clusters measured at a resolution high enough to allow for comparison with Franck–Condon simulations of the excited state transitions based on time‐dependent density functional theory calculations. The three vibrational frequencies identified for the lowest‐lying optically accessible excited state at 2.17 eV stem from the Y‐shaped isomer (C2v) and not from the rhombic isomer (D2h) considered to be the ground state structure of Au4+. This study demonstrates that an analysis of low‐resolution electronic spectra by calculations of vertical transitions alone is not sufficient for a reliable isomer assignment of such metal clusters.  相似文献   

16.
The vibrational (IR and Raman) and photoelectron spectral properties of hydrated iodine‐dimer radical‐anion clusters, I2.? ? n H2O (n=1–10), are presented. Several initial guess structures are considered for each size of cluster to locate the global minimum‐energy structure by applying a Monte Carlo simulated annealing procedure including spin–orbit interaction. In the Raman spectrum, hydration reduces the intensity of the I? I stretching band but enhances the intensity of the O? H stretching band of water. Raman spectra of more highly hydrated clusters appear to be simpler than the corresponding IR spectra. Vibrational bands due to simultaneous stretching vibrations of O? H bonds in a cyclic water network are observed for I2.? ? n H2O clusters with n≥3. The vertical detachment energy (VDE) profile shows stepwise saturation that indicates closing of the geometrical shell in the hydrated clusters on addition of every four water molecules. The calculated VDE of finite‐size small hydrated clusters is extrapolated to evaluate the bulk VDE value of I2.? in aqueous solution as 7.6 eV at the CCSD(T) level of theory. Structure and spectroscopic properties of these hydrated clusters are compared with those of hydrated clusters of Cl2.? and Br2.?.  相似文献   

17.
The electronic excited states of the olefin 1,1′‐bicylohexylidene (BCH) are investigated using multiconfigurational complete active space self‐consistent‐field second order perturbation theory in its multi‐state version (MS‐CASPT2). Our calculations undoubtedly show that the bulk of the intensity of the two unusually intense bands of the UV absorption of BCH measured with maxima at 5.95 eV and 6.82 eV in the vapor phase are due to a single ππ* valence excitation. Sharp peaks reported in the vicinity of the low‐energy feature in the gas phase correspond to the beginning of the π3sR Rydberg series. By locating the origin of the ππ* band at 5.63 eV, the intensity and broadening of the observed bands and their presence in solid phase is explained as the vibrational structure of the valence ππ* transition, which underlies the Rydberg manifold as a quasi‐continuum.  相似文献   

18.
An efficient catalytic one‐step conversion of benzene to phenol was achieved recently by selective photooxidation under mild conditions with 2,3‐dichloro‐5,6‐dicyano‐p‐benzoquinone (DDQ) as the photocatalyst. Herein, high‐level electronic structure calculations in the gas phase and in acetonitrile solution are reported to explore the underlying mechanism. The initially populated 1ππ* state of DDQ can relax efficiently through a nearby dark 1nπ* doorway state to the 3ππ* state of DDQ, which is found to be the precursor state involved in the initial intermolecular electron transfer from benzene to DDQ. The subsequent triplet‐state reaction between DDQ radical anions, benzene radical cations, and water is computed to be facile. The formed DDQH and benzene‐OH radicals can undergo T1→S0 intersystem crossing and concomitant proton‐coupled electron transfer (PCET) to generate the products DDQH2 and phenol. Two of the four considered nonadiabatic pathways involve an orientation‐dependent triplet PCET process, followed by intersystem crossing to the ground state (S0). The other two first undergo a nonadiabatic T1→S0 transition to produce a zwitterionic S0 complex, followed by a barrierless proton transfer. The present theoretical study identifies novel types of nonadiabatic PCET processes and provides detailed mechanistic insight into DDQ‐catalyzed photooxidation.  相似文献   

19.
The interaction spectrum is considered resulting from the near-resonance coupling of a small number of vibronic levels of two different electronic states. In the simple model proposed, the interactions between the near-resonance states are first explicitly considered and then the off-resonance interactions are treated by perturbation theory. The model is applied to the isoquinoline spectrum and it is shown that for isoquinoline the latter interactions may be safely ignored. Good agreement is achieved between the theoretical and experimental spectra, and many puzzling features, such as the irregular nature of the sequence structure and the ambiguous isotope effects are readily explained. The lowest excited singlet state is the nπ*, and it is located within about 1000 cm?1 of the first excited 1ππ*. Two vibronic levels of the 1nπ* state, corresponding to single quanta of the out-of-plane vibrations, are in near-resonance with the vibrationless 1ππ* level.  相似文献   

20.
The optimized molecular geometries of o‐dimethoxybenzene (ODMB) in the S0 state were predicted by ab initio and density functional theory calculations. Its vibrational spectra in the S1 and D0 states were studied by one color resonant two photon ionization (1C‐R2PI) and mass analyzed threshold ionization (MATI) experiments. The results indicated that trans rotamer was most stable. Only one rotamer of ODMB was detected by the 1C‐R2PI spectra, and its band origin was (35750±2) cm?1, its ionization energy was (61617±5) cm?1. Most of the observed vibrations in the D0 state resulted from the in‐plane ring and substituent sensitive modes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号