首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For x = (x 1, x 2, ..., x n ) ∈ ℝ+ n , the symmetric function ψ n (x, r) is defined by $\psi _n (x,r) = \psi _n \left( {x_1 ,x_2 , \cdots ,x_n ;r} \right) = \sum\limits_{1 \leqslant i_1 < i_2 \cdots < i_r \leqslant n} {\prod\limits_{j = 1}^r {\frac{{1 + x_{i_j } }} {{x_{i_j } }}} } ,$\psi _n (x,r) = \psi _n \left( {x_1 ,x_2 , \cdots ,x_n ;r} \right) = \sum\limits_{1 \leqslant i_1 < i_2 \cdots < i_r \leqslant n} {\prod\limits_{j = 1}^r {\frac{{1 + x_{i_j } }} {{x_{i_j } }}} } ,  相似文献   

2.
Summary. Let F, Y \Phi, \Psi be strictly monotonic continuous functions, F,G be positive functions on an interval I and let n ? \Bbb N \{1} n \in {\Bbb N} \setminus \{1\} . The functional equation¶¶F-1 ([(?i=1nF(xi)F(xi))/(?i=1n F(xi)]) Y-1 ([(?i=1nY(xi)G(xi))/(?i=1n G(xi))])  (x1,?,xn ? I) \Phi^{-1}\,\left({\sum\limits_{i=1}^{n}\Phi(x_{i})F(x_{i})\over\sum\limits_{i=1}^{n} F(x_{i}}\right) \Psi^{-1}\,\left({\sum\limits_{i=1}^{n}\Psi(x_{i})G(x_{i})\over\sum\limits_{i=1}^{n} G(x_{i})}\right)\,\,(x_{1},\ldots,x_{n} \in I) ¶was solved by Bajraktarevi' [3] for a fixed n 3 3 n\ge 3 . Assuming that the functions involved are twice differentiable he proved that the above functional equation holds if and only if¶¶Y(x) = [(aF(x) + b)/(cF(x) + d)],       G(x) = kF(x)(cF(x) + d) \Psi(x) = {a\Phi(x)\,+\,b\over c\Phi(x)\,+\,d},\qquad G(x) = kF(x)(c\Phi(x) + d) ¶where a,b,c,d,k are arbitrary constants with k(c2+d2)(ad-bc) 1 0 k(c^2+d^2)(ad-bc)\ne 0 . Supposing the functional equation for all n = 2,3,... n = 2,3,\dots Aczél and Daróczy [2] obtained the same result without differentiability conditions.¶The case of fixed n = 2 is, as in many similar problems, much more difficult and allows considerably more solutions. Here we assume only that the same functional equation is satisfied for n = 2 and solve it under the supposition that the functions involved are six times differentiable. Our main tool is the deduction of a sixth order differential equation for the function j = F°Y-1 \varphi = \Phi\circ\Psi^{-1} . We get 32 new families of solutions.  相似文献   

3.
Summary. It is shown that provided F and G are injective in every argument, the functional equation of generalized m ×n m \times n bisymmetry (m,n 3 2) (m,n \ge 2) ,¶¶ G(F1(x11, \hdots , x1n),\hdots , Fm(xm1,\hdots, xmn)) G(F_1(x_{11}, \hdots , x_{1n}),\hdots , F_m(x_{m1},\hdots, x_{mn})) ¶ = F(G1(x11,\hdots , xm1),\hdots , Gn(x1n,\hdots , xmn)) = F(G_1(x_{11},\hdots , x_{m1}),\hdots , G_n(x_{1n},\hdots , x_{mn})) ¶may be reduced to ¶¶ G([`(F)]1(u11, \hdots , u1n),\hdots ,[`(F)]m(um1,\hdots, umn)) G(\overline{F}_1(u_{11}, \hdots , u_{1n}),\hdots , \overline{F}_m(u_{m1},\hdots, u_{mn})) ¶ = F([`(G)]1(u11,\hdots , um1),\hdots ,[`(G)]n(u1n,\hdots , umn)) = F(\overline{G}_1(u_{11},\hdots , u_{m1}),\hdots ,\overline{G}_n(u_{1n},\hdots , u_{mn})) ¶where¶¶ Fi(xi1,\hdots , xin) = [`(F)]i (ji1(xi1),\hdots , jin(xin)), Gj(x1j, \hdots , xmj) = [`(G)]j(j1j (x1j),\hdots, jmj(xmj)) F_i(x_{i1},\hdots , x_{in}) = \overline{F}_i (\varphi_{i1}(x_{i1}),\hdots , \varphi_{in}(x_{in})), G_j(x_{1j}, \hdots , x_{mj}) = \overline{G}_j(\varphi_{1j} (x_{1j}),\hdots, \varphi_{mj}(x_{mj})) ,¶¶jij < /FORMULA > are surjections and < FORMULA > \varphi_{ij} are surjections and \overline{F}_i, \overline{G}_j < /FORMULA > are injective in every argument for all < FORMULA > are injective in every argument for all 1\le i \le m,\ 1\le j\le n $. The result is also shown to hold for a wider class of functional equations.  相似文献   

4.
Let x1,..., xn be points in the d-dimensional Euclidean space Ed with || xi-xj|| £ 1\| x_{i}-x_{j}\| \le 1 for all 1 \leqq i,j \leqq n1 \leqq i,j \leqq n, where || .||\| .\| denotes the Euclidean norm. We ask for the maximum M(d,n) of \mathop?ij=1n|| xi-xj|| 2\textstyle\mathop\sum\limits _{i,\,j=1}^{n}\| x_{i}-x_{j}\| ^{2} (see [4]). This paper deals with the case d = 2. We calculate M(2, n) and show that the value M(2, n) is attained if and only if the points are distributed as evenly as possible among the vertices of a regular triangle of edge-length 1. Moreover we give an upper bound for the value \mathop?ij=1n|| xi-xj|| \textstyle\mathop\sum\limits _{i,\,j=1}^{n}\| x_{i}-x_{j}\| , where the points x1,...,xn are chosen under the same constraints as above.  相似文献   

5.
6.
Let K be a convex body in \mathbbRn \mathbb{R}^n with volume |K| = 1 |K| = 1 . We choose N 3 n+1 N \geq n+1 points x1,?, xN x_1,\ldots, x_N independently and uniformly from K, and write C(x1,?, xN) C(x_1,\ldots, x_N) for their convex hull. Let f : \mathbbR+ ? \mathbbR+ f : \mathbb{R^+} \rightarrow \mathbb{R^+} be a continuous strictly increasing function and 0 £ in-1 0 \leq i \leq n-1 . Then, the quantity¶¶E (K, N, f °Wi) = òKK f[Wi(C(x1, ?, xN))]dxN ?dx1 E (K, N, f \circ W_{i}) = \int\limits_{K} \ldots \int\limits_{K} f[W_{i}(C(x_1, \ldots, x_N))]dx_{N} \ldots dx_1 ¶¶is minimal if K is a ball (Wi is the i-th quermassintegral of a compact convex set). If f is convex and strictly increasing and 1 £ in-1 1 \leq i \leq n-1 , then the ball is the only extremal body. These two facts generalize a result of H. Groemer on moments of the volume of C(x1,?, xN) C(x_1,\ldots, x_N) .  相似文献   

7.
Let F ì PG \mathcal{F} \subset {\mathcal{P}_G} be a left-invariant lower family of subsets of a group G. A subset A ⊂ G is called F \mathcal{F} -thin if xA ?yA ? F xA \cap yA \in \mathcal{F} for any distinct elements x, yG. The family of all F \mathcal{F} -thin subsets of G is denoted by t( F ) \tau \left( \mathcal{F} \right) . If t( F ) = F \tau \left( \mathcal{F} \right) = \mathcal{F} , then F \mathcal{F} is called thin-complete. The thin-completion t*( F ) {\tau^*}\left( \mathcal{F} \right) of F \mathcal{F} is the smallest thin-complete subfamily of PG {\mathcal{P}_G} that contains F \mathcal{F} . Answering questions of Lutsenko and Protasov, we prove that a set A ⊂ G belongs to τ*(G) if and only if, for any sequence (g n ) nω of nonzero elements of G, there is nω such that
?i0, ?, in ? { 0,  1 } g0i0 ?gninA ? F . \bigcap\limits_{{i_0}, \ldots, {i_n} \in \left\{ {0,\;1} \right\}} {g_0^{{i_0}} \ldots g_n^{{i_n}}A \in \mathcal{F}} .  相似文献   

8.
We consider a class of degenerate Ornstein–Uhlenbeck operators in ${\mathbb{R}^{N}}We consider a class of degenerate Ornstein–Uhlenbeck operators in \mathbbRN{\mathbb{R}^{N}} , of the kind
A o ?i, j=1p0aij?xixj2 + ?i, j=1Nbijxi?xj\mathcal{A}\equiv\sum_{i, j=1}^{p_{0}}a_{ij}\partial_{x_{i}x_{j}}^{2} + \sum_{i, j=1}^{N}b_{ij}x_{i}\partial_{x_{j}}  相似文献   

9.
We find some optimal estimates for the first eigenfunction of a class of elliptic equations whose prototype is - ( guxi )xi = lgu \textin W ì \mathbbRn - {\left( {\gamma u_{{x_{i} }} } \right)}_{{x_{i} }} = \lambda \gamma u\,{\text{in}}\,\Omega \subset \mathbb{R}^{n} with Dirichlet boundary condition, where γ is the normalized Gaussian function in \mathbbRn \mathbb{R}^{n} . To this aim we make use of the Gaussian symmetrization which transforms a domain into an half-space with the same Gaussian measure. The main tools we use are the properties of the weighted rearrangements and in particular the isoperimetric inequality with respect to Gaussian measure.  相似文献   

10.
We investigate infinite systems of algebraic equations of the form
xjm - ?i,k = 1 tjmikxik = fjm,    j = 1,2 ?,     m = 1,2, ?. {x_{jm}} - \sum\limits_{i,k = 1} {{t_{jmik}}{x_{ik}} = {f_{jm}},\quad j = 1,2 \ldots, \quad m = 1,2, \ldots .}  相似文献   

11.
A generalized Hlawka's inequality says that for any n (\geqq 2) (\geqq 2) complex numbers¶ x1, x2, ..., xn,¶¶ ?i=1n|xi - ?j=1nxj| \leqq ?i=1n|xi| + (n - 2)|?j=1nxj|. \sum_{i=1}^n\Bigg|x_i - \sum_{j=1}^{n}x_j\Bigg| \leqq \sum_{i=1}^{n}|x_i| + (n - 2)\Bigg|\sum_{j=1}^{n}x_j\Bigg|. ¶¶ We generalize this inequality to the trace norm and the trace of an n x n matrix A as¶¶ ||A - Tr A ||1 \leqq ||A||1 + (n - 2)| Tr A|. ||A - {\rm Tr} A ||_1\ \leqq ||A||_1 + (n - 2)| {\rm Tr} A|. ¶¶ We consider also the related inequalities for p-norms (1 \leqq p \leqq ¥) (1 \leqq p \leqq \infty) on matrices.  相似文献   

12.
We establish uniform estimates for order statistics: Given a sequence of independent identically distributed random variables ξ 1, … , ξ n and a vector of scalars x = (x 1, … , x n ), and 1 ≤ k ≤ n, we provide estimates for \mathbb E   k-min1 £ in |xixi|{\mathbb E \, \, k-{\rm min}_{1\leq i\leq n} |x_{i}\xi _{i}|} and \mathbb E k-max1 £ in|xixi|{\mathbb E\,k-{\rm max}_{1\leq i\leq n}|x_{i}\xi_{i}|} in terms of the values k and the Orlicz norm ||yx||M{\|y_x\|_M} of the vector y x  = (1/x 1, … , 1/x n ). Here M(t) is the appropriate Orlicz function associated with the distribution function of the random variable |ξ 1|, G(t) = \mathbb P ({ |x1| £ t}){G(t) =\mathbb P \left(\left\{ |\xi_1| \leq t\right\}\right)}. For example, if ξ 1 is the standard N(0, 1) Gaussian random variable, then G(t) = ?{\tfrac2p}ò0t e-\fracs22ds {G(t)= \sqrt{\tfrac{2}{\pi}}\int_{0}^t e^{-\frac{s^{2}}{2}}ds }  and M(s)=?{\tfrac2p}ò0se-\frac12t2dt{M(s)=\sqrt{\tfrac{2}{\pi}}\int_{0}^{s}e^{-\frac{1}{2t^{2}}}dt}. We would like to emphasize that our estimates do not depend on the length n of the sequence.  相似文献   

13.
Summary. The solution of the rectangular m ×n m \times n generalized bisymmetry equation¶¶F(G1(x11,...,x1n),..., Gm(xm1,...,xmn))     =     G(F1(x11,..., xm1),...,  Fn(x1n,...,xmn) ) F\bigl(G_1(x_{11},\dots,x_{1n}),\dots,\ G_m(x_{m1},\dots,x_{mn})\bigr) \quad = \quad G\bigl(F_1(x_{11},\dots, x_{m1}),\dots, \ F_n(x_{1n},\dots,x_{mn}) \bigr) (A)¶is presented assuming that the functions F, Gj, G and Fi (j = 1, ... , m , i = 1, ... , n , m S 2, n S 2) are real valued and defined on the Cartesian product of real intervals, and they are continuous and strictly monotonic in each real variable. Equation (A) is reduced to some special bisymmetry type equations by using induction methods. No surjectivity assumptions are made.  相似文献   

14.
A general law of moment convergence rates for uniform empirical process   总被引:1,自引:0,他引:1  
Let {X n ; n ≥ 1} be a sequence of independent and identically distributed U[0,1]-distributed random variables. Define the uniform empirical process $F_n (t) = n^{ - \tfrac{1} {2}} \sum\nolimits_{i = 1}^n {(I_{\{ X_i \leqslant t\} } - t),0} \leqslant t \leqslant 1,\left\| {F_n } \right\| = \sup _{0 \leqslant t \leqslant 1} \left| {F_n (t)} \right| $F_n (t) = n^{ - \tfrac{1} {2}} \sum\nolimits_{i = 1}^n {(I_{\{ X_i \leqslant t\} } - t),0} \leqslant t \leqslant 1,\left\| {F_n } \right\| = \sup _{0 \leqslant t \leqslant 1} \left| {F_n (t)} \right| . In this paper, the exact convergence rates of a general law of weighted infinite series of E {‖F n ‖ − ɛg s (n)}+ are obtained.  相似文献   

15.
Using the axiomatic method,abstract concepts such as abstract mean, abstract convex function and abstract majorization are proposed. They are the generalizations of concepts of mean, convex function and majorization, respectively. Through the logical deduction, the fundamental theorems about abstract majorization inequalities are established as follows: for arbitrary abstract mean Σ and Σ , and abstract Σ → Σ strict convex function f(x) on the interval I, if xi, yi ∈ I (i = 1, 2, . . . , n) satisfy that (x1...  相似文献   

16.
We establish the existence of fundamental solutions for the anisotropic porous medium equation, ut = ∑n i=1(u^mi)xixi in R^n × (O,∞), where m1,m2,..., and mn, are positive constants satisfying min1≤i≤n{mi}≤ 1, ∑i^n=1 mi 〉 n - 2, and max1≤i≤n{mi} ≤1/n(2 + ∑i^n=1 mi).  相似文献   

17.
We prove that for any $ \varepsilon > 0 $ \varepsilon > 0 there is k (e) k (\varepsilon) such that for any prime p and any integer c there exist k \leqq k(e) k \leqq k(\varepsilon) pairwise distinct integers xi with 1 \leqq xi \leqq pe, i = 1, ?, k 1 \leqq x_{i} \leqq p^{\varepsilon}, i = 1, \ldots, k , and such that¶¶?i=1k [1/(xi)] o c    (mod p). \sum\limits_{i=1}^k {{1}\over{x_i}} \equiv c\quad (\mathrm{mod}\, p). ¶¶ This gives a positive answer to a question of Erdös and Graham.  相似文献   

18.
In the middle of the 20th century Hardy obtained a condition which must be imposed on a formal power series f(x) with positive coefficients in order that the series f −1(x) = $ \sum\limits_{n = 0}^\infty {b_n x^n } $ \sum\limits_{n = 0}^\infty {b_n x^n } b n x n be such that b 0 > 0 and b n ≤ 0, n ≥ 1. In this paper we find conditions which must be imposed on a multidimensional series f(x 1, x 2, …, x m ) with positive coefficients in order that the series f −1(x 1, x 2, …, x m ) = $ \sum i_1 ,i_2 , \ldots ,i_m \geqslant 0^b i_1 ,i_2 , \ldots ,i_m ^{x_1^{i_1 } x_2^{i_2 } \ldots x_m^{i_m } } $ \sum i_1 ,i_2 , \ldots ,i_m \geqslant 0^b i_1 ,i_2 , \ldots ,i_m ^{x_1^{i_1 } x_2^{i_2 } \ldots x_m^{i_m } } satisfies the property b 0, …, 0 > 0, $ bi_1 ,i_2 , \ldots ,i_m $ bi_1 ,i_2 , \ldots ,i_m ≤ 0, i 12 + i 22 + … + i m 2 > 0, which is similar to the one-dimensional case.  相似文献   

19.
In the case where a 2π-periodic function f is twice continuously differentiable on the real axis ℝ and changes its monotonicity at different fixed points y i ∈ [− π, π), i = 1,…, 2s, s ∈ ℕ (i.e., on ℝ, there exists a set Y := {y i } i∈ℤ of points y i = y i+2s + 2π such that the function f does not decrease on [y i , y i−1] if i is odd and does not increase if i is even), for any natural k and n, nN(Y, k) = const, we construct a trigonometric polynomial T n of order ≤n that changes its monotonicity at the same points y i Y as f and is such that
*20c || f - Tn || £ \fracc( k,s )n2\upomega k( f",1 \mathord\vphantom 1 n n ) ( || f - Tn || £ \fracc( r + k,s )nr\upomega k( f(r),1 \mathord/ \vphantom 1 n n ),    f ? C(r),    r 3 2 ), \begin{array}{*{20}{c}} {\left\| {f - {T_n}} \right\| \leq \frac{{c\left( {k,s} \right)}}{{{n^2}}}{{{\upomega }}_k}\left( {f',{1 \mathord{\left/{\vphantom {1 n}} \right.} n}} \right)} \\ {\left( {\left\| {f - {T_n}} \right\| \leq \frac{{c\left( {r + k,s} \right)}}{{{n^r}}}{{{\upomega }}_k}\left( {{f^{(r)}},{1 \mathord{\left/{\vphantom {1 n}} \right.} n}} \right),\quad f \in {C^{(r)}},\quad r \geq 2} \right),} \\ \end{array}  相似文献   

20.
Let Lf(x)=-\frac1w?i,j ?i(ai,j(·)?jf)(x)+V(x)f(x){\mathcal{L}f(x)=-\frac{1}{\omega}\sum_{i,j} \partial_i(a_{i,j}(\cdot)\partial_jf)(x)+V(x)f(x)} with the non-negative potential V belonging to reverse H?lder class with respect to the measure ω(x)dx, where ω(x) satisfies the A 2 condition of Muckenhoupt and a i,j (x) is a real symmetric matrix satisfying l-1w(x)|x|2 £ ?ni,j=1ai,j(x)xixj £ lw(x)|x|2.{\lambda^{-1}\omega(x)|\xi|^2\le \sum^n_{i,j=1}a_{i,j}(x)\xi_i\xi_j\le\lambda\omega(x)|\xi|^2. } We obtain some estimates for VaL-a{V^{\alpha}\mathcal{L}^{-\alpha}} on the weighted L p spaces and we study the weighted L p boundedness of the commutator [b, Va L-a]{[b, V^{\alpha} \mathcal{L}^{-\alpha}]} when b ? BMOw{b\in BMO_\omega} and 0 < α ≤ 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号