首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Optical heterodyne-detected optical Kerr effect (OHD-OKE) experimental data are pre-sented on nematogens 4-(trans-4-n-octylcyclohexyl)isothiocyanatobenzene (8-CHBT), and 4-(4-pentyl-cyclohexyl)-benzonitrile (5-PCH) in the isotropic phase. The 8-CHBT and 5-PCH data and previously published data on 4-pentyl-4-biphenylcarbonitrile (5-CB) are analyzed using a modification of a schematic mode coupling theory (MCT) that has been successful in describing the dynamics of supercooled liquids. At long time, the OHD-OKE data (orientational relaxation) are well described with the standard Landau-de Gennes (LdG) theory. The data decay as a single exponential. The decay time diverges as the isotropic to nematic phase transition is approached from above. Previously there has been no theory that can describe the complex dynamics that occur at times short compared to the LdG exponential decay. Earlier, it has been noted that the short-time nematogen dynamics, which consist of several power laws, have a functional form identical to that observed for the short time behavior of the orientational relaxation of supercooled liquids. The temperature-dependent orientational dynamics of supercooled liquids have recently been successfully described using a schematic mode coupling theory. The schematic MCT theory that fits the supercooled liquid data does not reproduce the nematogen data within experimental error. The similarities of the nematogen data to the supercooled liquid data are the motivation for applying a modification of the successful MCT theory to nematogen dynamics in the isotropic phase. The results presented below show that the new schematic MCT theory does an excellent job of reproducing the nematogen isotropic phase OHD-OKE data on all time scales and at all temperatures.  相似文献   

2.
Optically heterodyne-detected optical Kerr effect experiments are applied to study the orientational dynamics of the supercooled ionic organic liquids N-propyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide (PMPIm) and 1-ethyl-3-methylimidazolium tosylate (EMImTOS). The orientational dynamics are complex with relaxation involving several power law decays followed by a final exponential decay. A mode coupling theory (MCT) schematic model, the Sj?gren model, was able to reproduce the PMPIm data very successfully over a wide range of times from 1 ps to hundreds of ns for all temperatures studied. Over the temperature range from room temperature down to the critical temperature Tc of 231 K, the OHD-OKE signal of PMPIm is characterized by the intermediate power law t(-1.00+/-0.04) at short times, a von Schweidler power law t(-0.51+/-0.03) at intermediate times, and a highly temperature-dependent exponential (alpha relaxation) at long times. This form of the decay is identical to the form observed previously for a large number of organic van der Waals liquids. MCT analysis indicates that the theory can explain the experimental data very well for a range of temperatures above Tc, but as might be expected, there are some deviations from the theoretical modeling at temperatures close to Tc. For EMImTOS, the orientational dynamics were studied on the ps time scale in the deeply supercooled region near its glass transition temperature. The orientational relaxation of EMImTOS clearly displays the feature associated with the boson peak at approximately 2 ps, which is the first time domain evidence of the boson peak in ionic organic liquids. Overall, all the dynamical features observed earlier for organic van der Waals liquids using the same experimental technique are also observed for organic ionic liquids.  相似文献   

3.
We have investigated the ultrafast molecular dynamics of five pyrrolidinium cation room temperature ionic liquids using femtosecond optical heterodyne-detected Raman-induced Kerr effect spectroscopy. The ionic liquids studied are N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide P14+/NTf2-), N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide P1EOE+/NTf2-), N-ethoxyethyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide P1EOE+/NTf2-), N-ethoxyethyl-N-methylpyrrolidinium bromide P1EOE+, and N-ethoxyethyl-N-methylpyrrolidinium dicyanoamide P1EOE+/DCA-). For comparing dynamics among the five ionic liquids, we categorize the ionic liquids into two groups. One group of liquids comprises the three pyrrolidinium cations P14+, P1EOM+, and P1EOE+ paired with the NTf2- anion. The other group of liquids consists of the P1EOE+ cation paired with each of the three anions NTf2-, Br-, and DCA-. The overdamped relaxation for time scales longer than 2 ps has been fit by a triexponential function for each of the five pyrrolidinium ionic liquids. The fast ( approximately 2 ps) and intermediate (approximately 20 ps) relaxation time constants vary little among these five ionic liquids. However, the slow relaxation time constant correlates with the viscosity. Thus, the Kerr spectra in the range from 0 to 750 cm(-1) are quite similar for the group of three pyrrolidinium ionic liquids paired with the NTf2- anion. The intermolecular vibrational line shapes between 0 and 150 cm(-1) are fit to a multimode Brownian oscillator model; adequate fits required at least three modes to be included in the line shape.  相似文献   

4.
Using time resolved optical depolarization, we have studied the rotational behavior of molecular probes in supercooled liquids near the glass transition temperature T(g). Simultaneously, the dynamics of the liquid immediately surrounding these rigid probes is measured by triplet state solvation experiments. This direct comparison of solute and solvent dynamics is particularly suited for assessing the origin of exponential orientational correlation functions of probe molecules embedded in liquids which exhibit highly nonexponential structural relaxation. Polarization angle dependent Stokes shift correlation functions demonstrate that probe rotation time and solvent response time are locally correlated quantities in the case of smaller probe molecules. Varying the size of both guest and host molecules shows that the size ratio determines the rotational behavior of the probes. The results are indicative of time averaging being at the origin of exponential rotation of probes whose rotational time constant is slower than solvent relaxation by a factor of 20 or more.  相似文献   

5.
We have prepared novel room temperature ionic liquids (RTILs) with trimethylsilylmethyl (TMSiM)-substituted imidazolium cations and compared the properties of these liquids with those for which the TMSiM group is replaced by the analogous neopentyl group. The ionic liquids are prepared with both tetrafluoroborate (BF(4)(-)) and bis(trifluoromethylsulfonyl)imide (NTf(2)(-)) anions paired with the imidazolium cations. At 22 degrees C, the TMSiM-substituted imidazolium ILs have shear viscosities that are reduced by a factor of 1.6 and 7.4 relative to the alkylimidazolium ILs for the NTf(2)(-) and BF(4)(-) anions, respectively. To understand the effect of silicon substitution on the viscosity, the charge densities have been calculated by using density functional theory electronic structure calculations. The ultrafast intermolecular, vibrational, and orientational dynamics of these RTILs have been measured by using femtosecond optical heterodyne-detected Raman-induced Kerr effect spectroscopy (OHD-RIKES). The intermolecular dynamical spectrum provides an estimate of the strength of interactions between the ions in the RTILs, and provides a qualitative explanation for the observed reduction in viscosity for the silicon-substituted RTILs.  相似文献   

6.
The intermolecular interactions and dynamics of novel ionic liquids with alkylsilyl and alkylsiloxy substitutions on the cations are studied by measuring the intermolecular vibrational spectra and reorientational dynamics using femtosecond Kerr effect methods. The new ionic liquids include 1-dimethylphenylsilylmethyl-3-methylimidazolium (PhSi-mim+), and 1-methyl-3-pentamethyldisiloxymethylimidazolium (SiOSi-mim+) cations paired with the bis(trifluoromethylsulfonyl)imide (NTf(2)-) anion. Measured ionic liquid viscosities are surprisingly low for such bulky cation substituents. DFT electronic structure calculations on the isolated ions provide additional information about the electrostatic interactions.  相似文献   

7.
Optically heterodyne-detected optical Kerr effect (OHD-OKE) experiments are conducted to study the orientational dynamics of a discotic liquid crystal 2,3,6,7,10,11-hexakis(pentyloxy)triphenylene (HPT) in the isotropic phase near the columnar-isotropic (C-I) phase transition. The OHD-OKE signal of HPT is characterized by an intermediate power law t(-0.76+/-0.02) at short times (a few picoseconds), a von Schweidler power law t(-0.26+/-0.01) at intermediate times (hundreds of picoseconds), and an exponential decay at long times (tens of nanoseconds). The exponential decay has Arrhenius temperature dependence. The functional form of the total time dependent decay is identical to the one observed previously for a large number of molecular supercooled liquids. The mode coupling theory schematic model based on the Sjogren [Phys. Rev. A 33, 1254 (1986)] model is able to reproduce the HPT data over a wide range of times from <1 ps to tens of nanoseconds. The studies indicate that the HPT C-I phase transition is a strong first order transition, and the dynamics in the isotropic phase display a complex time dependent profile that is common to other molecular liquids that lack mesoscopic structure.  相似文献   

8.
Steady-state and time-resolved emission spectroscopy with 25 ps resolution are used to measure equilibrium and dynamic aspects of the solvation of coumarin 153 (C153) in a diverse collection of 21 room-temperature ionic liquids. The ionic liquids studied here include several phosphonium and imidazolium liquids previously reported as well as 12 new ionic liquids that incorporate two homologous series of ammonium and pyrrolidinium cations. Steady-state absorption and emission spectra are used to extract solvation free energies and reorganization energies associated with the S0 <--> S1 transition of C153. These quantities, especially the solvation free energy, vary relatively little in ionic liquids compared to conventional solvents. Some correlation is found between these quantities and the mean separation between ions (or molar volume). Time-resolved anisotropies are used to observe solute rotation. Rotation times measured in ionic liquids correlate with solvent viscosity in much the same way that they do in conventional polar solvents. No special frictional coupling between the C153 and the ionic liquid solvents is indicated by these times. But, in contrast to what is observed in most low-viscosity conventional solvents, rotational correlation functions in ionic liquids are nonexponential. Time-resolved Stokes shift measurements are used to characterize solvation dynamics. The solvation response functions in ionic liquids are also nonexponential and can be reasonably represented by stretched-exponential functions of time. The solvation times observed are correlated with the solvent viscosity, and the much slower solvation in ionic liquids compared to dipolar solvents can be attributed to their much larger viscosities. Solvation times of the majority of ionic liquids studied appear to follow a single correlation with solvent viscosity. Only liquids incorporating the largest phosphonium cation appear to follow a distinctly different correlation.  相似文献   

9.
10.
以双三氟甲烷磺酰亚胺离子([NTf2]-)为阴离子,合成阳离子烷基取代不同(C1、C2和C4)的硅烷基咪唑离子液体,以其为固定相制备气相色谱填充柱。 硅烷基咪唑离子液体为强极性固定相;阳离子结构影响固定相的热稳定性、极性和分离性能。 在这些离子液体固定相中,1-丁基-3-[(3-三甲氧基硅基)-丙基]咪唑双三氟甲烷磺酰亚胺([PBIM]NTf2)对Grob试剂分离性能较好。 利用溶剂化作用参数模型,评价[PBIM]NTf2固定相特性,研究固定相-组分分子之间相互作用机制;同时考察[PBIM]NTf2色谱柱对不同类型化合物的分离性能。 结果表明,[PBIM]NTf2固定相主要作用力是氢键碱性和偶极作用,对烷烃、醇、酯和胺等不同类型的样品组分表现出良好的分离能力。  相似文献   

11.
While the imidazolium ionic liquids have been studied for some time, little is known about the pyrrolidinium ionic liquids. In this work, steady-state and picosecond time-resolved fluorescence behavior of three electron donor-acceptor molecules, coumarin-153 (C153), 4-aminophthalimide (AP), and 6-propionyl-2-dimethylaminonaphthalene (PRODAN), has been studied in a pyrrolidinium ionic liquid, N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide, abbreviated here as [bmpy][Tf2N]. The steady-state fluorescence data of the systems suggest that the microenvironment around these probe molecules, which is measured in terms of the solvent polarity parameter, E(T)(30), is similar to that in 1-decanol and that the polarity of this ionic liquid is comparable to that of the imidazolium ionic liquids. All three systems exhibit wavelength-dependent fluorescence decay behavior, and the time-resolved fluorescence spectra show a progressive shift of the fluorescence maximum toward the longer wavelength with time. This behavior is attributed to solvent-mediated relaxation of the fluorescent state of these systems. The dynamics of solvation, which is studied from the time-dependent shift of the fluorescence spectra, suggests that approximately 45% of the relaxation is too rapid to be measured in the present setup having a time resolution of 25 ps. The remaining observable components of the dynamics consist of a short component of 115-440 ps (with smaller amplitude) and a long component of 610-1395 ps (with higher amplitude). The average solvation time is consistent with the viscosity of this ionic liquid. The dynamics of solvation is dependent on the probe molecule, and nearly 2-fold variation of the solvation time depending on the probe molecule could be observed. No correlation of the solvation time with the probe molecule could, however, be observed.  相似文献   

12.
Time-resolved fluorescence Stokes shift and anisotropy measurements using a solvation probe in [0.78CH(3)CONH(2) + 0.22{f LiBr + (1-f) LiNO(3)}] melts reveal a strong decoupling of medium dynamics from viscosity. Interestingly, this decoupling has been found to occur at temperatures ~50-100 K above the glass transition temperatures of the above melt at various anion concentrations (f(LiBr)). The decoupling is reflected via the following fractional viscosity dependence (η) of the measured average solvation and rotation times (<τ(s)> and <τ(r)>, respectively): <τ(x)> ∝ (η∕T)(p) (x being solvation or rotation), with p covering the range, 0.20 < p < 0.70. Although this is very similar to what is known for deeply supercooled liquids, it is very surprising because of the temperature range at which the above decoupling occurs for these molten mixtures. The kinship to the supercooled liquids is further exhibited via p which is always larger for <τ(r)> than for <τ(s)>, indicating a sort of translation-rotation decoupling. Multiple probes have been used in steady state fluorescence measurements to explore the extent of static heterogeneity. Estimated experimental dynamic Stokes shift for coumarin 153 in these mixtures lies in the range, 1000 < Δν(t)/cm(-1) < 1700, and is in semi-quantitative agreement with predictions from our semi-molecular theory. The participation of the fluctuating density modes at various length-scales to the observed solvation times has also been investigated.  相似文献   

13.
Complementary neutron spin-echo and x-ray experiments and molecular-dynamics simulations have been performed on difluorotetrachloroethane (CFCl2-CFCl2) glassy crystal. Static, single-molecule reorientational dynamics and collective dynamics properties are investigated. Our results confirm the strong analogy between molecular liquids and plastic crystals. The orientational disorder is characterized at different temperatures and a change in the nature of rotational dynamics is observed. A careful check of the rotational diffusion model is performed using self-angular correlation functions Cl with high l values and compared to results obtained on molecular liquids composed of A-B dumbbells. Below the crossover temperature at which slow dynamics emerge, we show that some scaling predictions of the mode coupling theory hold and that alpha-relaxation times and nonergodicity parameters are controlled by the nontrivial static correlations.  相似文献   

14.
Solvation dynamics of the probe trans-4-(dimethylamino)-4'-cyanostilbene (DCS) have been measured in supercritical fluoroform at 310 K (1.04 Tc) and solvent densities over the range 1.4-2.0 rho(c) using optical Kerr-gated emission spectroscopy. Steady-state measurements and computer simulations of this and the related system coumarin 153 (C153) in fluoroform are used to help interpret the observed dynamics. The solvent contribution to the Stokes shift of DCS is estimated to be 2300 +/- 400 cm(-1) and nearly density independent over the range (0.7-2.0)rho(c). Spectral response functions are bimodal and can be fit to biexponential functions having time constants of approximately 0.5 ps (85%) and 3-10 ps (15%) over the observable range ((1.4-2.0)rho(c)). Computer simulations based on a 2-site model of fluoroform and assuming an electrostatic solvation mechanism appear to properly account for the magnitude and weak density dependence of the Stokes shifts but predict much faster solvation than is observed. Possible reasons for the discrepancy are discussed.  相似文献   

15.
Steady‐state and time‐resolved fluorescence behavior of coumarin 153 (C153) is investigated in a series of 1‐ethyl‐3‐methylimidazolium alkylsulfate ([C2mim][CnOSO3]) ionic liquids differing only in the length of the linear alkyl chain (n=4, 6, and 8) in the anion. The aim of the present study is to understand the role of alkyl chain length in solute rotation and solvation dynamics of C153 in these ionic liquids. The blueshift observed in the steady‐state absorption and emission maxima of C153 on going from the C4OSO3 to the C8OSO3 system indicates increasing nonpolar character of the microenvironment of the solute with increasing length of the alkyl side chain of the anion of the ionic liquids. The average solvation time is also found to increase on changing the substituent from butyl to octyl, and this is attributed to the increase in the bulk viscosity of the ILs. A steady blueshift of the time‐zero maximum of the fluorescence spectrum with increasing alkyl chain length also indicates that the probe molecule experiences a less polar environment in the early part of the dynamics. Rotational dynamics of C153 are also analyzed by using the Stokes–Einstein–Debye (SED), Gierer–Wirtz (GW), and Dote–Kivelson–Schwartz (DKS) theories. Analyses of the results seem to suggest decoupling of the rotational motion of the probe from solvent viscosity.  相似文献   

16.
The following properties are in the present literature associated with the behavior of supercooled glass-forming liquids: faster than exponential growth of the relaxation time, dynamical heterogeneities, growing point-to-set correlation length, crossover from mean-field behavior to activated dynamics. In this paper we argue that these properties are also present in a much simpler situation, namely the melting of the bulk of an ordered phase beyond a first order phase transition point. This is a promising path toward a better theoretical, numerical and experimental understanding of the above phenomena and of the physics of supercooled liquids. We discuss in detail the analogies and the differences between the glass and the bulk melting transitions.  相似文献   

17.
18.
We investigate seven 1-alkyl-1-methylpyrrolidinium-based ionic liquids, [C(n)C(1)Pyrr][X], using X-ray photoelectron spectroscopy (XPS). The electronic environment for each element is analysed and a robust fitting model is developed for the C 1s region that applies to each of the ionic liquids studied. This model allows accurate charge correction and the determination of reliable and reproducible binding energies for each ionic liquid studied. The electronic interaction between the cation and anion is investigated for ionic liquids with one and also two anions. i.e., mixtures. Comparisons are made to imidazolium-based ionic liquids; in particular, a detailed comparison is made between [C(8)C(1)Pyrr][X] and [C(8)C(1)Im][X](-), where X(?) is common to both ionic liquids.  相似文献   

19.
Recent optical Kerr effect experiments have revealed a power law decay of the measured signal with a temperature independent exponent at short-to-intermediate times for a number of liquid crystals in the isotropic phase near the isotropic-nematic transition and supercooled molecular liquids above the mode coupling theory critical temperature. In this work, the authors investigate the temperature dependence of short-to-intermediate time orientational relaxation in a model thermotropic liquid crystal across the isotropic-nematic transition and in a binary mixture across the supercooled liquid regime in molecular dynamics simulations. The measure of the experimentally observable optical Kerr effect signal is found to follow a power law decay at short-to-intermediate times for both systems in agreement with recent experiments. In addition, the temperature dependence of the power law exponent is found to be rather weak. As the model liquid crystalline system settles into the nematic phase upon cooling, the decay of the single-particle second-rank orientational time correlation function exhibits a pattern that is similar to what has been observed for supercooled liquids.  相似文献   

20.
Ultrafast optical Kerr effect spectroscopy has been used to study the temperature-dependent orientational dynamics of 1,n-dicyano n-alkane liquids ranging from dicyanomethane to 1,8-dicyanooctane. The dependence of the reorientational times on temperature and viscosity is consistent with the molecules adopting a largely extended structure in the liquid state, with a preference for gauche conformations at the methylenes bonded to the cyanide groups. The data are also suggestive of temperature-dependent, collective structural rearrangements in these liquids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号