首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
On the Largest Graph-Lagrangian of 3-Graphs with Fixed Number of Edges   总被引:1,自引:0,他引:1  
The Graph-Lagrangian of a hypergraph has been a useful tool in hypergraph extremal problems. In most applications, we need an upper bound for the Graph-Lagrangian of a hypergraph. Frankl and Füredi conjectured that the \({r}\) -graph with \(m\) edges formed by taking the first \(\textit{m}\) sets in the colex ordering of the collection of all subsets of \({\mathbb N}\) of size \({r}\) has the largest Graph-Lagrangian of all \(r\) -graphs with \(m\) edges. In this paper, we show that the largest Graph-Lagrangian of a class of left-compressed \(3\) -graphs with \(m\) edges is at most the Graph-Lagrangian of the \(\mathrm 3 \) -graph with \(m\) edges formed by taking the first \(m\) sets in the colex ordering of the collection of all subsets of \({\mathbb N}\) of size \({3}\) .  相似文献   

2.
Let \(p\) be a prime and let \(A\) be a nonempty subset of the cyclic group \(C_p\) . For a field \({\mathbb F}\) and an element \(f\) in the group algebra \({\mathbb F}[C_p]\) let \(T_f\) be the endomorphism of \({\mathbb F}[C_p]\) given by \(T_f(g)=fg\) . The uncertainty number \(u_{{\mathbb F}}(A)\) is the minimal rank of \(T_f\) over all nonzero \(f \in {\mathbb F}[C_p]\) such that \(\mathrm{supp}(f) \subset A\) . The following topological characterization of uncertainty numbers is established. For \(1 \le k \le p\) define the sum complex \(X_{A,k}\) as the \((k-1)\) -dimensional complex on the vertex set \(C_p\) with a full \((k-2)\) -skeleton whose \((k-1)\) -faces are all \(\sigma \subset C_p\) such that \(|\sigma |=k\) and \(\prod _{x \in \sigma }x \in A\) . It is shown that if \({\mathbb F}\) is algebraically closed then $$\begin{aligned} u_{{\mathbb F}}(A)=p-\max \{k :\tilde{H}_{k-1}(X_{A,k};{\mathbb F}) \ne 0\}. \end{aligned}$$ The main ingredient in the proof is the determination of the homology groups of \(X_{A,k}\) with field coefficients. In particular it is shown that if \(|A| \le k\) then \(\tilde{H}_{k-1}(X_{A,k};{\mathbb F}_p)\!=\!0.\)   相似文献   

3.
The linear complexity and the \(k\) -error linear complexity of a sequence have been used as important security measures for key stream sequence strength in linear feedback shift register design. By using the sieve method of combinatorics, we investigate the \(k\) -error linear complexity distribution of \(2^n\) -periodic binary sequences in this paper based on Games–Chan algorithm. First, for \(k=2,3\) , the complete counting functions for the \(k\) -error linear complexity of \(2^n\) -periodic binary sequences (with linear complexity less than \(2^n\) ) are characterized. Second, for \(k=3,4\) , the complete counting functions for the \(k\) -error linear complexity of \(2^n\) -periodic binary sequences with linear complexity \(2^n\) are presented. Third, as a consequence of these results, the counting functions for the number of \(2^n\) -periodic binary sequences with the \(k\) -error linear complexity for \(k = 2\) and \(3\) are obtained.  相似文献   

4.
We deal with the following conjecture. If \(w\) is a group word and \(G\) is a finite group in which any nilpotent subgroup generated by \(w\) -values has exponent dividing \(e\) , then the exponent of the verbal subgroup \(w(G)\) is bounded in terms of \(e\) and \(w\) only. We show that this is true in the case where \(w\) is either the \(n\text{ th }\) Engel word or the word \([x^n,y_1,y_2,\ldots ,y_k]\) (Theorem A). Further, we show that for any positive integer \(e\) there exists a number \(k=k(e)\) such that if \(w\) is a word and \(G\) is a finite group in which any nilpotent subgroup generated by products of \(k\) values of the word \(w\) has exponent dividing \(e\) , then the exponent of the verbal subgroup \(w(G)\) is bounded in terms of \(e\) and \(w\) only (Theorem B).  相似文献   

5.
The Johnson graph \(J(v,k)\) has, as vertices, the \(k\) -subsets of a \(v\) -set \(\mathcal {V}\) and as edges the pairs of \(k\) -subsets with intersection of size \(k-1\) . We introduce the notion of a neighbour-transitive code in \(J(v,k)\) . This is a proper vertex subset \(\Gamma \) such that the subgroup \(G\) of graph automorphisms leaving \(\Gamma \) invariant is transitive on both the set \(\Gamma \) of ‘codewords’ and also the set of ‘neighbours’ of \(\Gamma \) , which are the non-codewords joined by an edge to some codeword. We classify all examples where the group \(G\) is a subgroup of the symmetric group \(\mathrm{Sym}\,(\mathcal {V})\) and is intransitive or imprimitive on the underlying \(v\) -set \(\mathcal {V}\) . In the remaining case where \(G\le \mathrm{Sym}\,(\mathcal {V})\) and \(G\) is primitive on \(\mathcal {V}\) , we prove that, provided distinct codewords are at distance at least \(3\) , then \(G\) is \(2\) -transitive on \(\mathcal {V}\) . We examine many of the infinite families of finite \(2\) -transitive permutation groups and construct surprisingly rich families of examples of neighbour-transitive codes. A major unresolved case remains.  相似文献   

6.
A k-matching cover of a graph \(G\) is a union of \(k\) matchings of \(G\) which covers \(V(G)\) . The matching cover number of \(G\) , denoted by \(mc(G)\) , is the minimum number \(k\) such that \(G\) has a \(k\) -matching cover. A matching cover of \(G\) is optimal if it consists of \(mc(G)\) matchings of \(G\) . In this paper, we present an algorithm for finding an optimal matching cover of a graph on \(n\) vertices in \(O(n^3)\) time (if use a faster maximum matching algorithm, the time complexity can be reduced to \(O(nm)\) , where \(m=|E(G)|\) ), and give an upper bound on matching cover number of graphs. In particular, for trees, a linear-time algorithm is given, and as a by-product, the matching cover number of trees is determined.  相似文献   

7.
We prove that the general tensor of size \(2^n\) and rank \(k\) has a unique decomposition as the sum of decomposable tensors if \(k\le 0.9997\frac{2^n}{n+1}\) (the constant 1 being the optimal value). Similarly, the general tensor of size \(3^n\) and rank \(k\) has a unique decomposition as the sum of decomposable tensors if \(k\le 0.998\frac{3^n}{2n+1}\) (the constant 1 being the optimal value). Some results of this flavor are obtained for tensors of any size, but the explicit bounds obtained are weaker.  相似文献   

8.
A \(k\times u\lambda \) matrix \(M=[d_{ij}]\) with entries from a group \(U\) of order \(u\) is called a \((u,k,\lambda )\) -difference matrix over \(U\) if the list of quotients \(d_{i\ell }{d_{j\ell }}^{-1}, 1 \le \ell \le u\lambda ,\) contains each element of \(U\) exactly \(\lambda \) times for all \(i\ne j.\) Jungnickel has shown that \(k \le u\lambda \) and it is conjectured that the equality holds only if \(U\) is a \(p\) -group for a prime \(p.\) On the other hand, Winterhof has shown that some known results on the non-existence of \((u,u\lambda ,\lambda )\) -difference matrices are extended to \((u,u\lambda -1,\lambda )\) -difference matrices. This fact suggests us that there is a close connection between these two cases. In this article we show that any \((u,u\lambda -1,\lambda )\) -difference matrix over an abelian \(p\) -group can be extended to a \((u,u\lambda ,\lambda )\) -difference matrix.  相似文献   

9.
Let \(X\) be a compact Kähler manifold of dimension \(k\!\le \! 4\) and \(f{:}X\!\rightarrow \! X\) a pseudo-automorphism. If the first dynamical degree \(\lambda _1(f)\) is a Salem number, we show that either \(\lambda _1(f)=\lambda _{k-1}(f)\) or \(\lambda _1(f)^2=\lambda _{k-2}(f)\) . In particular, if \({\dim }(X)=3\) then \(\lambda _1(f)=\lambda _2(f)\) . We use this to show that if \(X\) is a complex 3-torus and \(f\) is an automorphism of \(X\) with \(\lambda _1(f)>1\) , then \(f\) has a non-trivial equivariant holomorphic fibration if and only if \(\lambda _1(f)\) is a Salem number. If \(X\) is a complex 3-torus having an automorphism \(f\) with \(\lambda _1(f)=\lambda _2(f)>1\) but is not a Salem number, then the Picard number of \(X\) must be 0, 3 or 9, and all these cases can be realized.  相似文献   

10.
Let \(E\) be a vector bundle over a smooth projective curve \(X\) defined over an algebraically closed field \(k\) . For any integer \(1\,\le \, r\, <\, \mathrm{rank}(E)\) , let \(\mathrm{Gr}_r(E)\,\longrightarrow \, X\) be a Grassmann bundle parametrizing all \(r\) dimensional quotients of the fibers of \(E\) . We compute the pseudo-effective cone in the real Néron–Severi group \(\mathrm{NS}(\mathrm{Gr}_r(E))_\mathbb{R }\) . We prove that this cone coincides with the nef cone in \(\mathrm{NS}(\mathrm{Gr}_r(E))_\mathbb{R }\) if and only if the vector bundle \(E\) is semistable (respectively, strongly semistable) when the characteristic of \(k\) is zero (respectively, positive). Examples are given to show that this characterization of (strong) semistability is not true for vector bundles on higher dimensional projective varieties.  相似文献   

11.
In this paper, we study geometry of conformal minimal two-spheres immersed in quaternionic projective spaces. We firstly use Bahy-El-Dien and Wood’s results to obtain some characterizations of the harmonic sequences generated by conformal minimal immersions from \(S^2\) to the quaternionic projective space \({ HP}^2\) . Then we give a classification theorem of linearly full totally unramified conformal minimal immersions of constant curvature from \(S^2\) to the quaternionic projective space \({ HP}^2\) .  相似文献   

12.
It was proved recently that a super-simple orthogonal array (SSOA) of strength \(t\) and index \(\lambda \ge 2\) is equivalent to a minimum detecting array (DTA). In computer software tests in component-based systems, such a DTA can be used to generate test suites that are capable of locating \(d=\lambda -1\) \(t\) -way interaction faults and detect whether there are more than \(d\) interaction faults. It is proved in this paper that an SSOA of strength \(t=3\) , index \(\lambda \ge 2\) and degree \(k=5\) , or an SSOA \(_{\lambda }(3,5,v)\) , exists if and only if \(\lambda \le v\) excepting possibly a handful of cases.  相似文献   

13.
Let \(K\subset \mathbb R ^N\) be a convex body containing the origin. A measurable set \(G\subset \mathbb R ^N\) with positive Lebesgue measure is said to be uniformly \(K\) -dense if, for any fixed \(r>0\) , the measure of \(G\cap (x+r K)\) is constant when \(x\) varies on the boundary of \(G\) (here, \(x+r K\) denotes a translation of a dilation of \(K\) ). We first prove that \(G\) must always be strictly convex and at least \(C^{1,1}\) -regular; also, if \(K\) is centrally symmetric, \(K\) must be strictly convex, \(C^{1,1}\) -regular and such that \(K=G-G\) up to homotheties; this implies in turn that \(G\) must be \(C^{2,1}\) -regular. Then for \(N=2\) , we prove that \(G\) is uniformly \(K\) -dense if and only if \(K\) and \(G\) are homothetic to the same ellipse. This result was already proven by Amar et al. in 2008 . However, our proof removes their regularity assumptions on \(K\) and \(G\) , and more importantly, it is susceptible to be generalized to higher dimension since, by the use of Minkowski’s inequality and an affine inequality, avoids the delicate computations of the higher-order terms in the Taylor expansion near \(r=0\) for the measure of \(G\cap (x+r\,K)\) (needed in 2008).  相似文献   

14.
Let \(R\) be an APVD with maximal ideal \(M\) . We show that the power series ring \(R[[x_1,\ldots ,x_n]]\) is an SFT-ring if and only if the integral closure of \(R\) is an SFT-ring if and only if ( \(R\) is an SFT-ring and \(M\) is a Noether strongly primary ideal of \((M:M)\) ). We deduce that if \(R\) is an \(m\) -dimensional APVD that is a residually *-domain, then dim \(R[[x_1,\ldots ,x_n]]\,=\,nm+1\) or \(nm+n\) .  相似文献   

15.
A subgroup \(H\) of an Abelian group \(G\) is called fully inert if \((\phi H + H)/H\) is finite for every \(\phi \in \mathrm{End}(G)\) . Fully inert subgroups of free Abelian groups are characterized. It is proved that \(H\) is fully inert in the free group \(G\) if and only if it is commensurable with \(n G\) for some \(n \ge 0\) , that is, \((H + nG)/H\) and \((H + nG)/nG\) are both finite. From this fact we derive a more structural characterization of fully inert subgroups \(H\) of free groups \(G\) , in terms of the Ulm–Kaplansky invariants of \(G/H\) and the Hill–Megibben invariants of the exact sequence \(0 \rightarrow H \rightarrow G \rightarrow G/H \rightarrow 0\) .  相似文献   

16.
Suppose that \(G\) is a finite group and \(H\) is a subgroup of \(G\) . \(H\) is said to be \(s\) -quasinormally embedded in \(G\) if for each prime \(p\) dividing the order of \(H\) , a Sylow \(p\) -subgroup of \(H\) is also a Sylow \(p\) -subgroup of some \(s\) -quasinormal subgroup of \(G\) . We fix in every non-cyclic Sylow subgroup \(P\) of \(G\) some subgroup \(D\) satisfying \(1<|D|<|P|\) and study the \(p\) -nilpotency of \(G\) under the assumption that every subgroup \(H\) of \(P\) with \(|H|=|D|\) is \(s\) -quasinormally embedded in \(G\) . Some recent results and the Frobenius \(^{\prime }\) theorem are generalized.  相似文献   

17.
We show that, for two non-trivial random variables \(X\) and \(Y\) under a sublinear expectation space, if \(X\) is independent from \(Y\) and \(Y\) is independent from \(X\) , then \(X\) and \(Y\) must be maximally distributed.  相似文献   

18.
Let \(M\) and \(N\) be two connected smooth manifolds, where \(M\) is compact and oriented and \(N\) is Riemannian. Let \(\mathcal {E}\) be the Fréchet manifold of all embeddings of \(M\) in \(N\) , endowed with the canonical weak Riemannian metric. Let \(\sim \) be the equivalence relation on \(\mathcal {E}\) defined by \(f\sim g\) if and only if \(f=g\circ \phi \) for some orientation preserving diffeomorphism \(\phi \) of \(M\) . The Fréchet manifold \(\mathcal {S}= \mathcal {E}/_{\sim }\) of equivalence classes, which may be thought of as the set of submanifolds of \(N\) diffeomorphic to \(M\) and is called the nonlinear Grassmannian (or Chow manifold) of \(N\) of type \(M\) , inherits from \( \mathcal {E}\) a weak Riemannian structure. We consider the following particular case: \(N\) is a compact irreducible symmetric space and \(M\) is a reflective submanifold of \(N\) (that is, a connected component of the set of fixed points of an involutive isometry of \( N\) ). Let \(\mathcal {C}\) be the set of submanifolds of \(N\) which are congruent to \(M\) . We prove that the natural inclusion of \(\mathcal {C}\) in \(\mathcal {S}\) is totally geodesic.  相似文献   

19.
Let \({\mathcal {A}}\subseteq {\mathbb {N}}^n\) be a finite set, and \(K\subseteq {\mathbb {R}}^n\) be a compact semialgebraic set. An \({\mathcal {A}}\) -truncated multisequence ( \({\mathcal {A}}\) -tms) is a vector \(y=(y_{\alpha })\) indexed by elements in \({\mathcal {A}}\) . The \({\mathcal {A}}\) -truncated \(K\) -moment problem ( \({\mathcal {A}}\) -TKMP) concerns whether or not a given \({\mathcal {A}}\) -tms \(y\) admits a \(K\) -measure \(\mu \) , i.e., \(\mu \) is a nonnegative Borel measure supported in \(K\) such that \(y_\alpha = \int _K x^\alpha \mathtt {d}\mu \) for all \(\alpha \in {\mathcal {A}}\) . This paper proposes a numerical algorithm for solving \({\mathcal {A}}\) -TKMPs. It aims at finding a flat extension of \(y\) by solving a hierarchy of semidefinite relaxations \(\{(\mathtt {SDR})_k\}_{k=1}^\infty \) for a moment optimization problem, whose objective \(R\) is generated in a certain randomized way. If \(y\) admits no \(K\) -measures and \({\mathbb {R}}[x]_{{\mathcal {A}}}\) is \(K\) -full (there exists \(p \in {\mathbb {R}}[x]_{{\mathcal {A}}}\) that is positive on \(K\) ), then \((\mathtt {SDR})_k\) is infeasible for all \(k\) big enough, which gives a certificate for the nonexistence of representing measures. If \(y\) admits a \(K\) -measure, then for almost all generated \(R\) , this algorithm has the following properties: i) we can asymptotically get a flat extension of \(y\) by solving the hierarchy \(\{(\mathtt {SDR})_k\}_{k=1}^\infty \) ; ii) under a general condition that is almost sufficient and necessary, we can get a flat extension of \(y\) by solving \((\mathtt {SDR})_k\) for some \(k\) ; iii) the obtained flat extensions admit a \(r\) -atomic \(K\) -measure with \(r\le |{\mathcal {A}}|\) . The decomposition problems for completely positive matrices and sums of even powers of real linear forms, and the standard truncated \(K\) -moment problems, are special cases of \({\mathcal {A}}\) -TKMPs. They can be solved numerically by this algorithm.  相似文献   

20.
Suppose that \(G\) is a finite group and \(H\) , \(K\) are subgroups of \(G\) . We say that \(H\) is weakly closed in \(K\) with respect to \(G\) if, for any \(g \in G\) such that \(H^{g}\le K\) , we have \(H^{g}=H\) . In particular, when \(H\) is a subgroup of prime-power order and \(K\) is a Sylow subgroup containing it, \(H\) is simply said to be a weakly closed subgroup of \(G\) or weakly closed in \(G\) . In the paper, we investigate the structure of finite groups by means of weakly closed subgroups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号