首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 366 毫秒
1.
The thermodynamic functions of a Fermi gas with spin population imbalance are studied in the temperature-asymmetry plane in the BCS limit. The low-temperature domain is characterized by an anomalous enhancement of the entropy and the specific heat above their values in the unpaired state, decrease of the gap and eventual unpairing phase transition as the temperature is lowered. The unpairing phase transition induces a second jump in the specific heat, which can be measured in calorimetric experiments. While the superfluid is unstable against a supercurrent carrying state, it may sustain a metastable state if cooled adiabatically down from the stable high-temperature domain. In the latter domain the temperature dependence of the gap and related functions is analogous to the predictions of the BCS theory.  相似文献   

2.
We consider the superfluid phase transition that arises when a Feshbach resonance pairing occurs in a dilute Fermi gas. We apply our theory to consider a specific resonance in potassium ((40)K), and find that for achievable experimental conditions, the transition to a superfluid phase is possible at the high critical temperature of about 0.5T(F). Observation of superfluidity in this regime would provide the opportunity to experimentally study the crossover from the superfluid phase of weakly coupled fermions to the Bose-Einstein condensation of strongly bound composite bosons.  相似文献   

3.
M. A. Baranov 《JETP Letters》1999,70(6):396-402
It is found that the character of single-particle excitations of a trapped neutral-atom Fermi gas is strongly influenced by a superfluid phase transition. Below the transition temperature the presence of a spatially inhomogeneous order parameter (gap) shifts the excitation eigenenergies upward and leads to the appearance of in-gap excitations localized in the outer part of the gas sample. The eigenenergies become sensitive to the gas temperature and are no longer multiples of the trap frequencies. These features should manifest themselves in a strong change of the density oscillations induced by modulations of the trap frequencies and can be used for identifying the superfluid phase transition. Pis’ma Zh. éksp. Teor. Fiz. 70, No. 6, 392–397 (25 September 1999) Published in English in the original Russian journal. Edited by Steve Torstveit.  相似文献   

4.
Using the Green's function approach, the density–density correlation function and the dielectric function in the random-phase approximation for a quasi-two-dimensional (quasi-2D) dipolar Bose gas are derived. From the pole of the density correlation function, by considering thermally induced roton-like excitations, the excitation spectrum of the system is calculated. It is shown that the position and depth of the roton minimum of the excitation spectrum are tunable by changing the temperature. To show how the position of the roton minimum influences the phenomenon of superfluidity, the superfluid density of the system is obtained and it is shown that the interplay of the thermal rotonization, contact and dipole–dipole interaction (DDI) can affect the superfluid fraction of a quasi-2D Bose gas. It is found that contact, DDI interactions, and thermally induced rotons enhance the fluctuations and reduce the superfluid density. In the absence of DDI and thermally induced rotons, the usual T3 dependence of superfluid density in 2D is obtained and the correction T4 term arises from DDI. It is shown that if the roton minimum is close to zero, the thermally induced rotons change the linear temperature dependence of the superfluid fraction, leading to a transition to nontrivial supersolid phase.  相似文献   

5.
We derive the underlying finite temperature theory which describes Fermi gas superfluidity with population imbalance in a homogeneous system. We compute the pair formation temperature, superfluid transition temperature Tc, and superfluid density in a manner consistent with the standard ground state equations and, thereby, present a complete phase diagram. Finite temperature stabilizes superfluidity, as manifested by two solutions for Tc or by low T instabilities. At unitarity, the polarized state is an "intermediate-temperature superfluid."  相似文献   

6.
We generalize the Beliaev-Popov diagrammatic technique for the problem of interacting dilute Bose gas with weak disorder. Averaging over disorder is implemented by the replica method. The low-energy asymptotic form of the Green function confirms that the low-energy excitations of the superfluid dirty-boson system are sound waves with velocity renormalized by the disorder and additional dissipation due to the impurity scattering. We find the thermodynamic potential and the superfluid density at any temperature below the superfluid transition temperature (but outside the Ginzburg region) and derive the phase diagram in temperature vs disorder plane.  相似文献   

7.
We investigate the phase diagram of asymmetric two-component Fermi gases at zero temperature as a function of polarization and interaction strength. The equations of state of the uniform superfluid and normal phase are determined using quantum Monte Carlo simulations. We find three different mixed states, where the superfluid and the normal phase coexist in equilibrium, corresponding to phase separation between (a) the polarized superfluid and the fully polarized normal gas, (b) the polarized superfluid and the partially polarized normal gas, and (c) the unpolarized superfluid and the partially polarized normal gas.  相似文献   

8.
We observe a localized phase of ultracold bosonic quantum gases in a 3-dimensional optical lattice induced by a small contribution of fermionic atoms acting as impurities in a Fermi-Bose quantum gas mixture. In particular, we study the dependence of this transition on the fermionic (40)K impurity concentration by a comparison to the corresponding superfluid to Mott-insulator transition in a pure bosonic (87)Rb gas and find a significant shift in the transition parameter. The observed shift is larger than expected based on a simple mean-field argument, which indicates that disorder-related effects play a significant role.  相似文献   

9.
The type of a phase transition in the quasi-equilibrium system of exciton polaritons in a two-dimensional optical microcavity has been analyzed. It has been shown that, although the system contains two types of bosons undergoing mutual transformations into each other, only one phase transition to the superfluid state with the quasilong-range order occurs in the two-dimensional system. This phase transition is a Kosterlitz-Thouless phase transition. A new physical implementation—excitons in a photon crystal—has been proposed for the Bose condensation of exciton polaritons. The superfluid properties of the ordered phase are discussed, and the superfluid density and Kosterlitz-Thouless transition temperature have been calculated in the low-density approximation.  相似文献   

10.
The results of recent neutron scattering studies of solid helium in silica aerogel are discussed. Previously I.V. Kalinin et al., Pis’ma Zh. éksp. Teor. Fiz. 87 (1), 743 (2008) [JETP Lett. 87 (1), 645 (2008)], we detected the existence of a superfluid phase in solid helium at a temperature below 0.6 K and a pressure of 51 bar, although, according to the phase diagram, helium should be in the solid state under these conditions. This work is a continuation of the above studies whose main goal was to examine the detected phenomenon and to establish basic parameters of the existence of a superfluid phase. We have determined the temperature of the superfluid transition from solid to superfluid helium, T C = 1.3 K, by analyzing experimental data. The superfluid phase excitation parameters (lifetime, intensity, and energy) have a temperature dependence similar to that of bulk helium. The superfluid phase coexists with the solid phase in the entire measured temperature range from T = 0.05 K to T C and is a nonequilibrium one and disappears at T C.  相似文献   

11.
We have observed phase separation between the superfluid and the normal component in a strongly interacting Fermi gas with imbalanced spin populations. The in situ distribution of the density difference between two trapped spin components is obtained using phase-contrast imaging and 3D image reconstruction. A shell structure is clearly identified where the superfluid region of equal densities is surrounded by a normal gas of unequal densities. The phase transition induces a dramatic change in the density profiles as excess fermions are expelled from the superfluid.  相似文献   

12.
We derive selfconsistency equations for the density relaxation and the longitudinal dynamical conductivity of the interacting Bose gas at temperature zero moving in a random potential. The equations describe a disorder-induced transition from a superfluid phase to an insulating phase, where the density is non-ergodic. The interaction of the bosons is treated in random phase approximation and the coupling to the impurities is calculated within generalized selfconsistent current relaxation theory. Scaling laws are discussed and explicit results are presented for the repulsive Bosgas with neutral impurities and for the charged Bose gas with charged impurities.  相似文献   

13.
We calculated in two loop order the field theoretic renormalization group functions taking into account the decomposition of the dynamical vertex functions into the static vertex functions and genuine dynamical parts. The observation of this nonperturbative structure simplifies the theoretical expressions obtained by perturbation theory considerably and makes tractable a complete two loop calculation of the critical dynamics near the superfluid transition of 3He-4He mixtures (model F'). As a result, we obtain various transport coefficients, which govern the nonasymptotic and nonuniversal temperature dependence. We also correct long-standing results for the critical dynamics of the superfluid transition in pure 4He (model F) and for the dynamics of structural or magnetic phase transitions (model C).  相似文献   

14.
We have studied the collective properties of two-dimensional (2D) excitons immersed within a quantum well which contains 2D excitons and a two-dimensional electron gas (2DEG). We have also analyzed the excitations for a system of 2D dipole excitons with spatially separated electrons and holes in a pair of quantum wells (CQWs) when one of the wells contains a 2DEG. Calculations of the superfluid density and the Kosterlitz–Thouless (K–T) phase transition temperature for the 2DEG-exciton system in a quantum well have shown that the K–T transition temperature increase with increasing exciton density and that it might be possible to have fast long-range transport of excitons. The superfluid density and the K–T transition temperature for dipole excitons in CQWs in the presence of a 2DEG in one of the wells increases with increasing inter-well separation.  相似文献   

15.
We consider excitons in a two-dimensional periodic potential and study the linear response of the excitonic superfluid to an electromagnetic wave at low and high densities. It turns out that the static structure factor for small wavevectors is very sensitive to a change of density and temperature. It is a consequence of the fact that thermal fluctuations play a crucial role at small wavevectors, since exchanging the order of the two limits, zero temperature and vanishing wavevector, leads to different results for the structure factor. This effect could be used for high accuracy measurements in the superfluid exciton phase, which might be realized by a gated electron-hole gas, for instance, in coupled quantum wells or double layer materials. The transition of the exciton system from the superfluid state to a non-superfluid state and its manifestation by light scattering are discussed.  相似文献   

16.
We examine the equilibrium properties of lattice bosons with attractive on-site interactions in the presence of a three-body hard-core constraint that stabilizes the system against collapse and gives rise to a dimer superfluid phase. Employing quantum Monte Carlo simulations, the ground state phase diagram of this system on the square lattice is analyzed. In particular, we study the quantum phase transition between the atomic and dimer superfluid regime and analyze the nature of the superfluid-insulator transitions. Evidence is provided for the existence of a tricritical point along the saturation transition line, where the transition changes from being first order to a continuous transition of the dilute Bose gas of holes. The Berzinskii-Kosterlitz-Thouless transition from the dimer superfluid to the normal fluid is found to be consistent with an anomalous stiffness jump, as expected from the unbinding of half-vortices.  相似文献   

17.
In this Letter a conventional method of statistical physics and quantum mechanics is used to calculate the effective area and the expansion energy for trapped Bose gas in a combined optical-magnetic potential. Correction due to the finite number of particles, interatomic interaction and the deepness of the lattice potential are given simultaneously. It is found that the system possess two different phases which are superfluid phase and Mott insulator phase. The critical temperature which separate these two phases is calculated. In the superfluid phase both the effective area and expansion energy is sensitive to the variation of temperature and lattice depth. Mott insulator phase is characterized by vanishing of the condensed fraction and freezing of the effective area at the value which corresponding to BEC transition temperature. So these parameters can serve as a practical thermometer for such system. The expansion energy shows that the lack of expansion in any direction is due to the strong anisotropy of the trapping potential in this direction. The obtained results provide a solid theoretical foundation for the current experiments.  相似文献   

18.
We measure the temperature dependence of the radial breathing mode in an optically trapped, unitary Fermi gas of 6Li, just above the center of a broad Feshbach resonance. The damping rate reveals a clear change in behavior which we interpret as arising from a superfluid transition. We suggest pair breaking as a mechanism for an increase in the damping rate which occurs at temperatures well above the transition. In contrast to the damping, the frequency varies smoothly and remains close to the unitary hydrodynamic value. At low temperature T, the damping depends on the atom number only through the reduced temperature, and extrapolates to 0 at T = 0.  相似文献   

19.
We have studied the properties of the scissors mode of a trapped Bose-Einstein condensate of 87Rb atoms at finite temperature. We measured a significant shift in the frequency of the mode below the hydrodynamic limit and a strong dependence of the damping rate as the temperature increased. We compared our damping rate results to recent theoretical calculations for other observed collective modes, finding a fair agreement. From the frequency measurements we deduce the moment of inertia of the gas and show that it is quenched below the transition point, because of the superfluid nature of the condensed gas.  相似文献   

20.
The s=1 spinor Bose condensate at zero temperature supports ferromagnetic and polar phases that combine magnetic and superfluid ordering. We analyze the topological defects of the polar condensate, correcting previous studies, and show that the polar condensate in two dimensions is unstable at any finite temperature; instead, there is a nematic or paired superfluid phase with algebraic order in exp(2itheta), where theta is the superfluid phase, and no magnetic order. The Kosterlitz-Thouless transition out of this phase is driven by unbinding of half-vortices (the spin-disordered version of the combined spin and phase defects found by Zhou), and the anomalous universal 8T(c)/pi stiffness jump at the transition is confirmed in numerical simulations. The anomalous stiffness jump is a clear experimental signature of this phase and the corresponding phase transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号