首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 113 毫秒
1.
In this study, the behaviour of an inclined water jet, which is impinged onto hydrophobic and superhydrophobic surfaces, has been investigated experimentally. Water jet was impinged with different inclination angles (15°–45°) onto five different hydrophobic surfaces made of rough polymer, which were held vertically. The water contact angles on these surfaces were measured as 102°, 112°, 123°, 145° and 167° showing that the last surface was superhydrophobic. Two different nozzles with 1.75 and 4 mm in diameters were used to create the water jet. Water jet velocity was within the range of 0.5–5 m/s, thus the Weber number varied from 5 to 650 and Reynolds number from 500 to 8,000 during the experiments. Hydrophobic surfaces reflected the liquid jet depending on the surface contact angle, jet inclination angle and the Weber number. The variation of the reflection angle with the Weber number showed a maximum value for a constant jet angle. The maximum value of the reflection angle was nearly equal to half of the jet angle. It was determined that the viscous drag decreases as the contact angle of the hydrophobic surface increases. The drag force on the wall is reduced dramatically with superhydrophobic surfaces. The amount of reduction of the average shear stress on the wall was about 40%, when the contact angle of the surface was increased from 145° to 167°. The area of the spreading water layer decreased as the contact angle of the surface increased and as the jet inclination angle, Weber number and Reynolds number decreased.  相似文献   

2.
Experimental and numerical studies have been carried out for slot air jet impingement on a heated concave surface of a partially opened-top horizontal cylinder of length L = 20 cm. The slot jet is situated at the symmetry line of the partially opened-top cylinder along the gravity vector and impinges to the bottom of the cylinder which is designated as θ = 0°. The width of the opening at the top of the horizontal cylinder is W = 3 cm which corresponds to a circumferential angle Δθ = 50.8°. The experiments are performed by a Mach–Zehnder interferometer which enables to measure the local convection heat transfer coefficient. Also, a finite volume method based on the SIMPLE algorithm and non-orthogonal grid discretization scheme is used to solve the continuity, momentum, and energy equations. The Poisson equations are solved for (x, y) to find the grid points which are distributed in a non-uniform manner with higher concentration close to the solid regions. The effects of jet Reynolds number (Re j) in the range from 190 to 1,600 and the ratio of spacing between nozzle and cylinder surface to the jet width from H = 1.5 to H = 10.7 on the local and average Nusselt numbers are examined. It is observed that maximum Nusselt number occurs at the stagnation point at (θ = 0°) and the local heat transfer coefficient decreases on the circumferential surface of the cylinder with increase of θ as a result of thermal boundary layer thickness growth. Also results show that the local and average heat transfer coefficients are raised by increasing the jet Reynolds number and by decreasing the nozzle-to-surface spacing.  相似文献   

3.
Heat transfer from an open-wedge cavity to a symmetrically impinging slot air jet is investigated at the present study. The effect of the cavity angle was mainly examined on the Nusselt number distribution. Based on the results, heat transfer was generally poor at the vicinity of the apex, rising to form a maximum at the impingement and then followed by a moderate decline at further distances. The region of maximum heat transfer on the surfaces shifted outward the cavity as the cavity angle was decreased. Also, average Nusselt number over an effective length of the surface remained almost constant and independent of the cavity angle for a specified jet Reynolds number and nozzle-to-apex spacing.  相似文献   

4.
Artificially roughness is one of the well known methods of enhancing heat transfer from the heat transfer surface in the form of repeated ribs, grooves or combination of ribs and groove (compound turbulators). The artificial roughness produced on the heat transferring surface is used in cooling of gas turbine blades, nuclear reactor, solar air heating systems etc. Solar air heaters have wide applications in low to moderate temperature range, namely, drying of foods, agricultural crops, seasoning of wood and space heating etc. Solar air heaters have low value of convective heat transfer coefficient between the working fluid (air) and the heat transferring surface, due to the formation of thin laminar viscous sub-layer on its surface. The heat transfer from the surface can be increased by breaking this laminar viscous sub layer. Hence, in the present work compound turbulators in the form of integral wedge shaped ribs with grooves are used on the heat transfer surface, to study its effect on the heat transfer coefficient (Nusselt number) and friction factor in the range of Reynolds number 3,000–18,000. The roughness produced on the absorber plate forms the wetted side of upper broad wall of the rectangular duct of solar air heater. The relative groove position (g/p) was varied from 0.4 to 0.8 and the wedge angle (Φ) was varied from 10° to 25°, relative roughness pitch (p/e) and relative roughness height (e/D) was maintained as 8.0 and 0.033 respectively. The aspect ratio of the rectangular duct was maintained as 8. The Nusselt number and friction factor of the artificially roughened ducts were determined experimentally and the corresponding values were compared with that of smooth surface duct. It is observed that wedge-groove roughened surface shows more enhancement in heat transfer compared to only rib roughened surface arrangement. The investigation revealed that Nusselt number increases 1.5–3 times, while the friction factor increases two to three folds that of the smooth surface duct in the range of operating parameters. It is also observed that in rib–groove roughness arrangement with relative groove position of 0.65 shows the maximum enhancement in the heat transfer compared to the other rib-groove roughness arrangements. Statistical correlations for the Nusselt number and friction factor have been developed by the regression method in terms of the operating and roughness parameters. A program was also developed in MATLAB for the calculation of thermal efficiency and thermal effectiveness. It was observed that the thermal efficiency is more for wedge angle of 15° and relative groove position of 0.65 and its value ranges from 42 to 73 %. The uncertainties in the measurements due to various instruments for the Reynolds number, Nusselt number, and friction factor have been estimated as ±3.8, ±4.54 and ±7.6 % respectively in the range of investigation made.  相似文献   

5.
An experimental investigation was carried out to determine the effects of jets in crossflow on impingement heat transfer from rib-roughened curved duct with rotational speeds of 120 and 240 rpm. The jet impinged on curved surface in crossflow having repeated square ribs (3 2 3mm). The curvature of the duct was fixed and has a value of 300 mm. The rib height (e) was fixed at 1.5 mm and pitch-to-height ratio (p/e) kept at 2. The study covered jet Reynolds number in the range 6500 to 26000, and duct stream crossflow Reynolds number from 3250 to 13000 based on jet nozzle diameter, respectively, which gave M = 0.12 to 2. Results were presented for rotational, crossflow, roughened surfaces and curvature effects on local Nusselt numbers. Significant heat transfer enhancement was found for the present physical geometry and within the ranges of operating parameters considered in the study.  相似文献   

6.
A boundary layer analysis has been presented for the combined convection along a vertical non-isothermal wedge embedded in a fluid-saturated porous medium. The transformed conservation laws are solved numerically for the case of variable surface temperature. Results are presented for the details of the velocity and temperature fields as well as the Nusselt number. The wedge angle geometry parameter m ranged from 0 to 1.  相似文献   

7.
The flow and heat transfer characteristics of an unconfined air jet that is impinged normally onto a heated flat plate have been experimentally investigated for high Reynolds numbers ranging from 30,000 to 70,000 and a nozzle-to-plate spacing range of 1–10. The mean and turbulence velocities by using hot-wire anemometry and impingement surface pressures with pressure transducer are measured. Surface temperature measurements are made by means of an infrared thermal imaging technique. The effects of Reynolds number and nozzle-to-plate spacing on the flow structure and heat transfer characteristics are described and compared with similar experiments. It was seen that the locations of the second peaks in Nusselt number distributions slightly vary with Reynolds number and nozzle-to-plate spacing. The peaks in distributions of Nusselt numbers and radial turbulence intensity are compatible for spacings up to 3. The stagnation Nusselt number was correlated for the jet Reynolds number and the nozzle-to-plate spacing as Nu stRe 0.69(H/D)0.019.  相似文献   

8.
In this article, a numerical investigation is performed on flow and heat transfer of confined impinging slot jet, with a mixture of water and Al2O3 nanoparticles as the working fluid. Two-dimensional turbulent flow is considered and a constant temperature is applied on the impingement surface. The k ? ω turbulence model is used for the turbulence computations. Two-phase mixture model is implemented to study such a flow field. The governing equations are solved using the finite volume method. In order to consider the effect of obstacle angle on temperature fields in the channel, the numerical simulations were performed for different obstacle angles of 0° ? 60°. Also different geometrical parameters, volume fractions and Reynolds numbers have been considered to study the behavior of the system in terms of stagnation point, average and local Nusselt number and stream function contours. The results showed that the intensity and size of the vortex structures depend on jet- impingement surface distance ratio (H/W) and volume fraction. The maximum Nusselt number occurs at the stagnation point with the highest values at about H/W = 1. Increasing obstacle angle, from 15° to 60°, enhances the heat transfer rate. It was also revealed that the minimum value of average Nusselt number occurs in higher H/W ratios with decreasing the channel length.  相似文献   

9.
The flow and heat transfer in an inclined and horizontal rectangular duct with a heated plate longitudinally mounted in the middle of cross section was experimentally investigated. The heated plate and rectangular duct were both made of highly conductive materials, and the heated plate was subjected to a uniform heat flux. The heat transfer processes through the test section were under various operating conditions: Pr ≈ 0.7, inclination angle ϕ = −60° to +60°, Reynolds number Re = 334–1,911, Grashof number Gr = 5.26 × 102–5.78 × 106. The experimental results showed that the average Nusselt number in the entrance region was 1.6–2 times as large as that in the fully developed region. The average Nusselt numbers and pressure drops increased with the Reynolds number. The average Nusselt numbers and pressure drops decreased with an increase in the inclination angle from −60° to +60° when the Reynolds number was less than 1,500. But when the Reynolds number increased to over about 1,800, the heat transfer coefficients and pressure drops were independent of inclination angles.  相似文献   

10.
Experiments are carried out to study flow and heat transfer characteristics over NACA0018 aerofoil when the body approaches the wall of a wind tunnel. Investigations have been done to study the effect of wall proximity due to flow separation around the body at Reynolds number 2.5 × 105, different height ratios and various angles of attack. The static pressure distribution has been measured on upper and lower surfaces of the aerofoil. The results have been presented in the form of pressure coefficient, drag coefficient for different height ratios. Pressure coefficient values are decreased and then increased on the lower surface of the aerofoil and decreased on the upper surface of the aerofoil at all angles of attack. The negative pressure coefficient and drag coefficient decreases as the body approaches the upper wall of wind tunnel. The maximum value of drag coefficient has been observed at an angle of attack 30° for the aerofoil at all height ratios. The Heat transfer experiments have been carried out under constant heat flux condition. Heat transfer coefficients are determined from the measured wall temperature and ambient temperature and presented in the form of Nusselt number. The variation of local as well as average Nusselt number has been shown with non dimensional distance for different angles of attack and for various height ratios. The local as well as average Nusselt number decreases as the height ratio decreases for all non-dimensional distance and angles of attack respectively. Maximum value of average Nusselt number has been observed at an angle of attack 40°.  相似文献   

11.
An experimental study was carried out to investigate the effect of the inclination jet on convection heat transfer to horizontal flat plate. Local heat transfer determined as a function is of three parameters including inclination angle of the air jet relative to the plate in range of 90° ≤ θ ≤ 45°, jet-to-plate spacing in range of 2 ≤ L/D ≤ 8 and Reynolds number in range of 1,500 ≤ Re ≤ 30,000. The results show that the maximum heat transfer point moves towards the uphill side of the plate and the maximum heat transfer decreases as the inclination angle decreases. The correlations were conducted to predict maximum and local Nusselt number as a function of Re, θ, L/D, and x/D for a specific three regions.  相似文献   

12.
Experimental results are presented for characteristics of impingement heat transfer caused by three slot jets. Experimental values were obtained for the dimensionless distance H = 0.5−3, dimensionless pitch P = 6−16, and Reynolds number Re = 500−8000. For laminar impinging flow, they were compared with numerical results. For turbulent impinging flow, two peaks of the local Nusselt number were obtained behind the second nozzle. The position of the second peak approached the nozzle as the space between nozzle and impinged surface decreased. The average Nusselt number between the central and second nozzles was determined from the ratio P/H and the Reynolds number based on the pitch of the nozzles.  相似文献   

13.
Smoke–wire flow visualization is used to investigate the behavior of a round jet issuing from a straight tube and impinging on a convex surface. Video analysis of the impinging jet shows the initiation and growth of ring vortices in the jet shear layer and their interaction with the cylindrical surfaces. Effects of relative curvature, nozzle-to-surface distance, and Reynolds number on vortex initiation, vortex separation from the surface and vortex breakup are described. Examples of vortex merging are discussed.  相似文献   

14.
Natural convective heat transfer from an isothermal inclined cylinder with a square cross-section which have an exposed top surface and is, in general, inclined at an angle to the vertical has been numerically and experimentally studied. The cylinder is mounted on a flat adiabatic base plate, the cylinder being normal to the base plate. The numerical solution has been obtained by solving the dimensionless governing equations subject to the boundary conditions using the commercial cfd solver, FLUENT. The flow has been assumed to be symmetrical about the vertical center-plane through the cylinder. Results have only been obtained for Prandtl number of 0.7. Values of inclination angle between 0° and 180° and a wide range of Rayleigh number and the dimensionless cylinder width, W = w/h, have been considered. The effects of Dimensionless widths, Rayleigh numbers, and inclination angles on the mean Nusselt number for the entire cylinder and for the mean Nusselt numbers for the various surfaces that make up the cylinder have been examined. Empirical equations for the heat transfer rates from the entire cylinder have been derived.  相似文献   

15.
Current work presents the comparison of the cooling characteristics of roughened and smooth heated surfaces subjected to co-axial impinging jet. The work fluid is air and the data runs are performed for jet Reynolds numbers for 10,000, 20,000 and 40,000, and non-dimensional surface to jet exit spacing, H/D, from 1 to 10. The co-axial jet configuration is based on a fully developed pipe flow encountering a double-pipe arrangement and splitting between the two pipes. The inner to outer diameter ratio is 0.5. A straight pipe without inner section is used as the circular jet. The impingement of circular jets to the roughened and smooth surfaces is also performed for comparison. Average Nusslet numbers were obtained to show the heat transfer enhancement from the surface. A good agreement between the literature and present paper was obtained. As a result, average Nusselt number with co-axial jet impingement to the roughened surface increased by up to 27% comparing to the circular jet impingement. In addition, the average Nusselt number increased with roughened surface by up to 6% over the whole surface area, comparing to the smooth surface.  相似文献   

16.
Using steam as working fluid to replace compressed air is a promising cooling technology for internal cooling passages of blades and vanes. The local heat transfer characteristics and the thermal performance of steam flow in wide aspect ratio channels (W/H = 2) with different angled ribs on two opposite walls have been experimentally investigated in this paper. The averaged Nusselt number ratios and the friction factor ratios of steam and air in four ribbed channels were also measured under the same test conditions for comparison. The Reynolds number range is 6,000–70,000. The rib angles are 90°, 60°, 45°, and 30°, respectively. The rib height to hydraulic diameter ratio is 0.047. The pitch-to-rib height ratio is 10. The results show that the Nusselt number ratios of steam are 1.19–1.32 times greater than those of air over the range of Reynolds numbers studied. For wide aspect ratio channels using steam as the coolant, the 60° angled ribs has the best heat transfer performance and is recommended for cooling design.  相似文献   

17.
An experimental and numerical study has been carried out to investigate the heat transfer characteristics of a horizontal circular cylinder exposed to a slot jet impingement of air. A square-edged nozzle is mounted parallel with the cylinder axis and jet flow impinges on the bottom of the cylinder. The study is focused on low Reynolds numbers ranging from 120 to 1,210, Grashof numbers up to Gr = 10Re 2 and slot-to-cylinder spacing from 2 to 8 of the slot width. The flow field is greatly influenced by the slot exit velocity and the buoyancy force due to density change. A Mach–Zehnder Interferometer is used for measurement of local Nusselt number around the cylinder at 10° interval. It is observed that the average Nusselt number decreases with increasing the jet spacing and increases with rising the Reynolds number. A finite volume method utilizing a curvilinear coordinate transformation is used for numerical modeling. The numerical results show good agreement with the experimental results. The flow and thermal field are seen to be stable and symmetric around the cylinder over the range of parameters studied.  相似文献   

18.
The heat transfer characteristics of a planar free water jet normally or obliquely impinging onto a flat substrate were investigated experimentally. The planar jet issued from a rectangular slot nozzle with a cross section of 1.62 mm × 40 mm. The mean velocity at the nozzle exit ranged from 1.5 to 6.1 m s−1. The corresponding Reynolds number range based on the nozzle gap and the mean velocity was 2200–8800. Constant heat-flux conditions were employed at the solid surface. Various impingement angles between the vertical planar jet and the inclined solid surface were investigated: 90° (normal collision), 70°, 60°, and 50°. In the case of normal collisions, the Nusselt number is high at the impingement line, and decreases with departures from it. The stagnation Nusselt numbers were compared to the predictions of several correlations proposed by other researchers. In oblique collisions, the profiles of the local Nusselt numbers are asymmetric. The locations of the peak Nusselt numbers do not coincide with the geometric center of the planar jet on the surface.  相似文献   

19.
The pattern of shock wave reflection over a wedge is, in general, either a regular reflection or a Mach reflection, depending on wedge angles, shock wave Mach numbers, and specific heat ratios of gases. However, regular and Mach reflections can coexist, in particular, over a three-dimensional wedge surface, whose inclination angles locally vary normal to the direction of shock propagation. This paper reports a result of diffuse double exposure holographic interferometric observations of shock wave reflections over a skewed wedge surface placed in a 100 × 180 mm shock tube. The wedge consists of a straight generating line whose local inclination angle varies continuously from 30° to 60°. Painting its surface with fluorescent spray paint and irradiating its surface with a collimated object beam at a time interval of a few microseconds, we succeeded in visualizing three-dimensional shock reflection over the skewed wedge surface. Experiments were performed at shock Mach numbers, 1.55, 2.02, and 2.53 in air. From reconstructed holographic images, we estimated critical transition angles at these shock wave Mach numbers and found that these were very close to those over straight wedges. This is attributable to the flow three-dimensionality.   相似文献   

20.
The effect of corner angle variations on pressure drop and heat transfer characteristics is investigated in the fully developed region of wavy ducts with trapezoidal cross‐sections. The resulting enhancement of convection, with respect to corresponding straight ducts, can be attributed to the formation of longitudinal vortices close to the two parallel surfaces. Numerical simulations show that Nusselt numbers and friction factors increase with the decrease of corner angle from 90 to 60°, before levelling out around 60°. Nusselt numbers and friction factors also increase with the Reynolds number, and the slopes of their representative curves increase above a critical value of the Reynolds number because of the onset of time‐periodic flow oscillations. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号