首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An experimental investigation is performed to study the effect of jet to plate spacing and low Reynolds number on the local heat transfer distribution to normally impinging submerged circular air jet on a smooth and flat surface. A single jet from a straight circular nozzle of length-to-diameter ratio (l/d) of 83 is tested. Reynolds number based on nozzle exit condition is varied between 500 and 8,000 and jet-to-plate spacing between 0.5 and 8 nozzle diameters. The local heat transfer characteristics are obtained using thermal images from infrared thermal imaging technique. It was observed that at lower Reynolds numbers, the effect of jet to plate distances covered during the study on the stagnation point Nusselt numbers is minimal. At all jet to plate distances, the stagnation point Nusselt numbers decrease monotonically with the maximum occurring at a z/d of 0.5 as opposed to the stagnation point Nusselt numbers at high Reynolds numbers which occur around a z/d of 6.  相似文献   

2.
An experimental investigation was carried out to determine the effects of jets in crossflow on impingement heat transfer from rib-roughened curved duct with rotational speeds of 120 and 240 rpm. The jet impinged on curved surface in crossflow having repeated square ribs (3 2 3mm). The curvature of the duct was fixed and has a value of 300 mm. The rib height (e) was fixed at 1.5 mm and pitch-to-height ratio (p/e) kept at 2. The study covered jet Reynolds number in the range 6500 to 26000, and duct stream crossflow Reynolds number from 3250 to 13000 based on jet nozzle diameter, respectively, which gave M = 0.12 to 2. Results were presented for rotational, crossflow, roughened surfaces and curvature effects on local Nusselt numbers. Significant heat transfer enhancement was found for the present physical geometry and within the ranges of operating parameters considered in the study.  相似文献   

3.
This investigation had multiple goals. One goal was to obtain definitive information about the heat transfer characteristics of co-axial impinging jets, and this was achieved by measurements of the stagnation-point, surface-distribution and average heat transfer coefficients. These results are parameterized by the Reynolds number Re which ranged from 5000 to 25,000, the dimensionless separation distance between the jet exit and the impingement plate H/D (4–12), and the ratio of the inner diameters of the inner and outer pipes d/D (0–0.55). The d/D = 0 case corresponds to a single circular jet. The other major goal of this work was to quantify the velocity field of co-axial free jets (impingement plate removed). The velocity-field study included both measurements of the mean velocity and the turbulence intensity.It was found that the variation of the stagnation-point heat transfer coefficient with d/D attained a maximum at d/D = 0.55. Furthermore, the variation of the local heat transfer coefficient across the impingement surface was more peaked for d/D = 0 and became flatter with decreasing d/D. This suggests that for cooling a broad expanse of surface, co-axial jets of high d/D are preferable. On the other hand, for localized cooling, the single jet (d/D = 0) performed the best. In general, for a given Reynolds number, a co-axial jet yields higher heat transfer coefficients than a single jet. Off-axis velocity peaks were encountered for the jets with d/D = 0.105. The measurements of turbulence intensity yielded values as high as 18%.  相似文献   

4.
An experimental and numerical study has been carried out to investigate the heat transfer characteristics of a horizontal circular cylinder exposed to a slot jet impingement of air. A square-edged nozzle is mounted parallel with the cylinder axis and jet flow impinges on the bottom of the cylinder. The study is focused on low Reynolds numbers ranging from 120 to 1,210, Grashof numbers up to Gr = 10Re 2 and slot-to-cylinder spacing from 2 to 8 of the slot width. The flow field is greatly influenced by the slot exit velocity and the buoyancy force due to density change. A Mach–Zehnder Interferometer is used for measurement of local Nusselt number around the cylinder at 10° interval. It is observed that the average Nusselt number decreases with increasing the jet spacing and increases with rising the Reynolds number. A finite volume method utilizing a curvilinear coordinate transformation is used for numerical modeling. The numerical results show good agreement with the experimental results. The flow and thermal field are seen to be stable and symmetric around the cylinder over the range of parameters studied.  相似文献   

5.
A large eddy simulation is used to simulate flow and heat transfer in a turbulent plane jet with two distances from the jet-exit to impingement corresponding to twice and ten times the slot nozzle width. The resolved different unsteady vortex motions of the jet shear layers are studied and shown to have an important influence on heat transfer at the wall. They are used to explain existence of the second peak in Nusselt number for the case corresponding to twice the slot nozzle width. The predicted average surface Nusselt number profiles exhibit good agreement with experiments.  相似文献   

6.
In the generation of discrete tones by subsonic impinging jets, there exists a difference of opinion as how the feedback is achieved, i.e., the path of the feedback acoustic waves is whether inside the jet or outside the jet? The only available model (Tam and Ahuja model) for the prediction of an average subsonic jet impingement tone frequency assumes that the upstream part of the feedback loop is closed by an upstream propagating neutral wave of the jet. But, there is no information about the plate geometry in the model. The present study aims at understanding the effect of the plate geometry (size and co-axial hole in the plate) on the self-excitation process of subsonic impinging jets and the path of the acoustic feedback to the nozzle exit. The present results show that there is no effect of plate diameter on the frequency of the self-excitation. A new type of tones is generated for plates with co-axial hole (hole diameter is equal to nozzle exit diameter) for Mach numbers 0.9 and 0.95, in addition to the axisymmetric and helical mode tones observed for plates without co-axial hole. The stability results show that the Strouhal number of the least dispersive upstream propagating neutral waves match with the average Strouhal number of the new tones observed in the present experiments. The present study extends the validity of the model of Tam and Ahuja to a plate with co-axial hole (annular plate) and by doing so, we indirectly confirmed that the major acoustic feedback path to the nozzle exit is inside the jet.  相似文献   

7.
Heat transfer from an open-wedge cavity to a symmetrically impinging slot air jet is investigated at the present study. The effect of the cavity angle was mainly examined on the Nusselt number distribution. Based on the results, heat transfer was generally poor at the vicinity of the apex, rising to form a maximum at the impingement and then followed by a moderate decline at further distances. The region of maximum heat transfer on the surfaces shifted outward the cavity as the cavity angle was decreased. Also, average Nusselt number over an effective length of the surface remained almost constant and independent of the cavity angle for a specified jet Reynolds number and nozzle-to-apex spacing.  相似文献   

8.
The heat transfer characteristics of a planar free water jet normally or obliquely impinging onto a flat substrate were investigated experimentally. The planar jet issued from a rectangular slot nozzle with a cross section of 1.62 mm × 40 mm. The mean velocity at the nozzle exit ranged from 1.5 to 6.1 m s−1. The corresponding Reynolds number range based on the nozzle gap and the mean velocity was 2200–8800. Constant heat-flux conditions were employed at the solid surface. Various impingement angles between the vertical planar jet and the inclined solid surface were investigated: 90° (normal collision), 70°, 60°, and 50°. In the case of normal collisions, the Nusselt number is high at the impingement line, and decreases with departures from it. The stagnation Nusselt numbers were compared to the predictions of several correlations proposed by other researchers. In oblique collisions, the profiles of the local Nusselt numbers are asymmetric. The locations of the peak Nusselt numbers do not coincide with the geometric center of the planar jet on the surface.  相似文献   

9.
This combined experimental and numerical study focuses on impingement jet cooling in combination with detached rib turbulators on a flat target for turbomachinery applications. The investigated impingement array consists of an impingement plate with 9 × 9 jet holes with diameter D and a target plate with detached ribs installed beneath the jet hole. The effects of different separation distances (H/D=3-5), jet Reynolds numbers (15,000-35,000) and rib clearances (0.3D and 0.08D) are investigated. The heat transfer is investigated experimentally by the transient liquid crystal (TLC) method. A computational fluid dynamics (CFD) model is carried out within the software package ANSYS CFX. This model uses a steady-state three-dimensional Reynolds-Averaged Navier-Stokes (RANS) approach with the Shear Stress Transport (SST) turbulence model. Numerical simulations allow detailed insight into the fluid mechanics of the complex flow field and complement experimental measurements. Detached ribs in the impingement channel have a strong influence on the flow field and can increase the global Nusselt number by up to 4% if the ribs have adiabatic boundary conditions. The usage of the detached rib reduces the relative discharge coefficient by up to 11% compared to a smooth target.  相似文献   

10.
The spatially resolved effectiveness distributions for a single jet and row of circular jets impinging on a convex surface are reported in the present study. The impinging surface was inclined at 0°, 15°, 30° and 45° to the jet axis. Studies were conducted for a single curvature ratio equal to 0.05 at a constant Reynolds number equal to 40,000 for non-dimensional jet-to-target distances, L/d equal to 2, 4, 6, 8 and 10. Two non-dimensional jet-to-jet spacings, S/d, equal to 4 and 8 were studied. The effectiveness distribution for multiple jet impingement was noticed to be different from that for a single jet impingement. The entrainment from the surrounding was mitigated for the inner jets by the outer jets. The interaction of adjacent walljets forms a ‘barrier’ against the percolation of entrained ambient from the outer jet region towards the inner region. The zone of walljet interaction and region near to the inner jets were therefore observed to result in high effectiveness values. The inclined impingement of the jet reduces the strength of interaction of the walljets on up and downhill sides and thereby reduces the ‘barrier effect’ against the entrainment of ambient, which causes similar variation of effectiveness for all the jets in a row at high inclinations.  相似文献   

11.
The flow and heat transfer characteristics of an unconfined air jet that is impinged normally onto a heated flat plate have been experimentally investigated for high Reynolds numbers ranging from 30,000 to 70,000 and a nozzle-to-plate spacing range of 1–10. The mean and turbulence velocities by using hot-wire anemometry and impingement surface pressures with pressure transducer are measured. Surface temperature measurements are made by means of an infrared thermal imaging technique. The effects of Reynolds number and nozzle-to-plate spacing on the flow structure and heat transfer characteristics are described and compared with similar experiments. It was seen that the locations of the second peaks in Nusselt number distributions slightly vary with Reynolds number and nozzle-to-plate spacing. The peaks in distributions of Nusselt numbers and radial turbulence intensity are compatible for spacings up to 3. The stagnation Nusselt number was correlated for the jet Reynolds number and the nozzle-to-plate spacing as Nu stRe 0.69(H/D)0.019.  相似文献   

12.
An experimental investigations of heat transfer for a stationary isothermal circular cylinder exposed normal to an impinging round air-jet has been reported. The circumferential heat transfer distributions as well as axial Nusselt number is measured. The measurements are taken as a function of the Reynolds number ranging from 3.8 × 103 to 4 × 104, the cylinder separation distance to the nozzle diameter (z/d) varying from 7 to 30, and the nozzle to cylinder diameter ratio (d/D) changing from 0.06 to 0.14. The output results indicated that the axial and radial distributions of the local heat transfer peaked at the impingement point. The heat transfer rate increases as the values of z decreases, for the same d and Re. The drop-off of the Nusselt number with increasing axial distance or radial angle from the impingement point was more pronounced for smaller z and d. The peripheral and surface average Nusselt numbers were determined by integration. The experimental data was used to produce correlations for both average and stagnation point heat transfer. Received on 4 January 1999  相似文献   

13.
Experimental and numerical studies have been carried out for slot air jet impingement on a heated concave surface of a partially opened-top horizontal cylinder of length L = 20 cm. The slot jet is situated at the symmetry line of the partially opened-top cylinder along the gravity vector and impinges to the bottom of the cylinder which is designated as θ = 0°. The width of the opening at the top of the horizontal cylinder is W = 3 cm which corresponds to a circumferential angle Δθ = 50.8°. The experiments are performed by a Mach–Zehnder interferometer which enables to measure the local convection heat transfer coefficient. Also, a finite volume method based on the SIMPLE algorithm and non-orthogonal grid discretization scheme is used to solve the continuity, momentum, and energy equations. The Poisson equations are solved for (x, y) to find the grid points which are distributed in a non-uniform manner with higher concentration close to the solid regions. The effects of jet Reynolds number (Re j) in the range from 190 to 1,600 and the ratio of spacing between nozzle and cylinder surface to the jet width from H = 1.5 to H = 10.7 on the local and average Nusselt numbers are examined. It is observed that maximum Nusselt number occurs at the stagnation point at (θ = 0°) and the local heat transfer coefficient decreases on the circumferential surface of the cylinder with increase of θ as a result of thermal boundary layer thickness growth. Also results show that the local and average heat transfer coefficients are raised by increasing the jet Reynolds number and by decreasing the nozzle-to-surface spacing.  相似文献   

14.
In this article, a numerical investigation is performed on flow and heat transfer of confined impinging slot jet, with a mixture of water and Al2O3 nanoparticles as the working fluid. Two-dimensional turbulent flow is considered and a constant temperature is applied on the impingement surface. The k ? ω turbulence model is used for the turbulence computations. Two-phase mixture model is implemented to study such a flow field. The governing equations are solved using the finite volume method. In order to consider the effect of obstacle angle on temperature fields in the channel, the numerical simulations were performed for different obstacle angles of 0° ? 60°. Also different geometrical parameters, volume fractions and Reynolds numbers have been considered to study the behavior of the system in terms of stagnation point, average and local Nusselt number and stream function contours. The results showed that the intensity and size of the vortex structures depend on jet- impingement surface distance ratio (H/W) and volume fraction. The maximum Nusselt number occurs at the stagnation point with the highest values at about H/W = 1. Increasing obstacle angle, from 15° to 60°, enhances the heat transfer rate. It was also revealed that the minimum value of average Nusselt number occurs in higher H/W ratios with decreasing the channel length.  相似文献   

15.
The present paper describes the heat transfer characteristics of an annular turbulent impinging jet with a confined wall. The local temperature distribution on the impingement surface was measured using a thermosensitive liquid crystal sheet and an image processor. The net heat flux was evaluated by considering the heat conduction in the heated substrate and the thermal radiation between an upper confining insulated wall and an impingement surface. Distributions of the temperature and Nusselt number on the impingement surface were captured in two-dimensional maps. Effects of the diameter ratio of the annular nozzle, the space between nozzle and impingement surface and the Reynolds number on radial distributions of the local Nusselt number were examined. Experimental formulas of the local Nusselt number were obtained in power-law expressions of r/rp for the major and minor flow regions.  相似文献   

16.
The application of an impinging sweeping jet, which oscillates periodically with a large angle, to convective heat transfer has received attention owing to its capability to provide a more spatially uniform and enhanced heat removal rate when compared to a steady jet. Herein, we study how the surface curvature affects the heat transfer performance of a sweeping jet and couple it with the representative flow characteristics. Heat transfer measurement and quantitative flow visualization are conducted experimentally for concave and convex surfaces as well as a flat surface. Whereas concave surfaces have a better heat transfer rate than a flat surface, the enhancement of the heat transfer is relatively small for a convex surface. For both concave and convex surfaces, the Nusselt number does not increase monotonically with the curvature magnitude but has a peak for a moderate curvature. The variation in heat transfer performance with the surface curvature is correlated with the phase-averaged velocity profile of the wall jet deflected after an impingement and the turbulence kinetic energy inside the jet. For both concave and convex surfaces, the wall jet becomes thinner than a flat surface in general, which contributes to improved heat transfer. However, whereas the turbulence kinetic energy is significantly larger for a concave surface of a moderate curvature than that of a flat surface, the turbulence kinetic energy for a convex surface is reduced from that of a flat surface, resulting in degradation of the heat transfer performance.  相似文献   

17.
This paper describes an experimental investigation at Reynolds number equal to 5000 on circular and chevron impinging jets by means of time-resolved tomographic particle image velocimetry (TR-TOMO PIV) and infrared (IR) thermography. TR-TOMO PIV experiments are performed at kilo-hertz repetition rate in a tailored water jet facility where a plate is placed at a distance of 4 diameters from the nozzle exit. Using air as working fluid, time-averaged convective heat transfer is measured on the impinged plate by means of IR thermography with the heated-thin-foil heat transfer sensor for nozzle-to-plate distances ranging from 2 to 10 diameters. The circular impingement shows the shedding and pairing of axisymmetric toroidal vortices with the later growth of azimuthal instabilities and counter-rotating streamwise vortices. In the chevron case, instead, the azimuthal coherence is replaced by counter-rotating pairs of streamwise vortices that develop from the chevron notches. The heat transfer performances of the chevron impingement are compared with those of the circular one, analyzing the influence of the nozzle-to-plate distance on the distribution of Nusselt number. The chevron configuration leads to enhanced heat transfer performances for all the nozzle-to-plate distances hereby investigated with improvements up to 44% at the center of the impinged area for nozzle-to-plate distance of 4. Such enhancements are discussed in relation to the streamwise structures that, compared with the toroidal vortices, are associated with an earlier penetration of turbulence towards the jet axis and a higher arrival speed.  相似文献   

18.
The flow characteristics of both confined and unconfined air jets, impinging normally onto a flat plate have been experimentally investigated. The mean and turbulence velocities, and surface pressures were measured for Reynolds numbers ranging from 30,000 to 50,000 and the nozzle-to-plate spacings in range of 0.2–6. Smoke-wire technique is used to visualize the flow behavior. The effects of Reynolds number, nozzle-to-plate spacing and flow confinement on the flow structure are reported. In the case of confined jet, subatmospheric regions occur on both impingement and confinement surfaces at nozzle-to-plate spacings up to 2 for all Reynolds numbers in consideration and they lie up to nearly the same radial location at both surfaces. However, there is no evidence of the subatmospheric region in unconfined jet. It is concluded that there exists a linkage among the subatmospheric region, turbulence intensity and the peaks in heat transfer coefficients for low spacings in impinging jets.  相似文献   

19.
This paper investigates the heat transfer characteristics from thin strips pin fins due to their exposure to a single circular downward air jet impingement. Five aluminum specimens were considered; each one has a rectangular base of 84 mm × 78 mm and it has an array of about 300 thin strips pin fins. A test rig consists mainly of air compressor; nozzle and protractor mechanism was setup. Experiments were done to find out the effects of attack angle, Reynolds number, nozzle-to-target spacing, lateral pitch and parallel pitch among the fins on the heat transfer characteristics. Empirical correlations were deduced to describe the experimental data. A CFD-numerical model was introduced to monitor the flow characteristics on a scale of more details than that possible in the experimental work. The comparison among the results of the present work and those by the literature shows about 50% improvement in heat transfer characteristics rather than the single jet impingement onto flat plates, cylindrical surfaces, ribbed walls and multiple jets impingement onto flat plates.  相似文献   

20.
 Steady, laminar, mixed convection in the fully developed region of horizontal concentric annuli has been investigated numerically for the case of non-uniform circumferential heating. Two heating conditions were studied, one in which a 180 arc encompassing the top half of inner surface of the inner cylinder is uniformly heated while the bottom half is kept insulated, and the other in which the heated and the insulated surfaces were reversed. The fluid flow and heat transfer characteristics were found to be affected by the heating conditions. For the investigated range of the governing buoyancy parameter, the modified Grashof number (Gr*), it was found that bottom heating arrangement gives rise to a vigorous secondary flow, with the result that the average Nusselt numbers are much higher than those for pure forced convection. On the other hand, the local Nusselt numbers are nearly circumferentially uniform. In the case of top heating arrangement, a less vigorous secondary flow is induced because of temperature stratification, with average Nusselt numbers that are substantially lower than those for bottom heating and with large circumferential variation of the local Nusselt number. Received on 15 March 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号