首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An analytical procedure has been proposed to attack a highly conjugate thermal problem associated with radiation, convection and conduction within a heat insulating wall structure. Firstly, an analytical solution is derived for fully-developed mixed convective flow through parallel plates. Secondly, the resulting expressions for convection are coupled with radiation and conduction equations to form a set of heat balance equations for each heat transfer surface. Illustrative calculations are conducted to estimate heat transfer rates through a heat insulating roof structure with an aluminum partition with high reflectivity, subject to solar radiation in summer. The effect of an aluminum partition on the heat insulation is elucidated.  相似文献   

2.
The effect of thermal radiation on the non-Darcy mixed convection flow over a non-isothermal horizontal surface immersed in a saturated porous medium has been studied. The wall temperature is assumed to have a power-law variation with the distance measured from the leading edge of the plate. The non-linear coupled parabolic partial differential equations governing the flow have been solved numerically using a finite-difference scheme. For some particular cases, the self-similar solution has also been obtained. The heat transfer is found to be strongly influenced by the radiative flux number, buoyancy parameter, variation of wall temperature, non-Darcy parameter and the nature of the free stream velocity.  相似文献   

3.
In the present investigation, the coupled phenomenon of opposing mixed convection and radiation within differentially heated eccentric horizontal cylindrical annulus has been numerically simulated. The radiation transfer contributed from the participating medium is obtained by solving the nonlinear integro‐differential radiative transfer equation using discrete ordinate method. The participating gray medium is considered to be emitting, absorbing and isotropically scattering. The walls of the annulus are considered to be opaque, diffuse and gray. In the study it has been observed that the Richardson number ‘Ri’ has a small effect on the total Nusselt number ‘Nu’ in mixed convection heat transfer with or without radiation. From the present investigation it is found that substantial changes occur in isotherms as well as in flow patterns, when the Richardson number is allowed to vary in the range of 0.01–1. The influence of radiative parameters on the interaction phenomenon has been delineated through isotherm and streamline pattern. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
A study has been made of convective heat transfer between carbon dioxide and electrically heated wires in horizontal and vertical channels. The heat-transfer and convection coefficients have been and a dimensionless correlation determining the onset of convection verified.  相似文献   

5.
The paper presents an investigation of the influence of thermal radiation and viscous dissipation on the mixed convective flow due to a vertical plate immersed in a non-Darcy porous medium saturated with a Newtonian fluid. The physical properties of the fluid are assumed to be constant. The Rosseland approximation is used to describe the radiative heat flux in the energy equation. The governing partial differential equations are transformed into a system of ordinary differential equations and solved numerically using a shooting method. The results are analyzed for the effects of various physical parameters such as viscous dissipation, thermal radiation, mixed convection parameters, and the modified Reynolds number on dynamics. The heat transfer coefficient is also tabulated for different values of the physical parameters.  相似文献   

6.
This paper describes the thermal convection and heat transfer in a cylindrical fluid layer rotating around a horizontal axis, with various constant temperatures set at the layer boundaries. The influence of the rotational speed of the cylindrical fluid layer on the convective heat transfer in this layer is studied. The study results are presented as functions of dimensionless parameters that characterize the action of two convective mechanisms: centrifugal and thermal-oscillatory. It is shown that, with low rotational speed, the heat transfer is determined by quasistationary gravitational convection.  相似文献   

7.
Laminar mixed convection of nanofluid consisting of water/Al2O3 in a horizontal curved tube is investigated numerically. Three dimensional elliptical governing equations have been solved to study the simultaneous effect of the buoyancy and centrifugal forces throughout the curved tube. The effects of nanoparticle concentrations on the secondary flow and also on the contours of temperature are presented and discussed. Axial velocity profiles with respect to the horizontal and vertical diameter are shown. In addition, the effects of nanoparticle volume fractions on the axial evolution of the local peripheral average convective heat transfer coefficient and the local peripheral average skin friction coefficient are studied. It is shown that the average convective heat transfer coefficient augments with the nanoparticle concentrations. However, its effect on the average skin friction coefficient is negligible.  相似文献   

8.
The structured packed bed is considered a promising reactor owing to its low pressure drop and good heat transfer performance. In the heat transfer process of thermal storage in packed beds, natural convection plays an important role. To obtain the mixed convective heat transfer characteristics and mechanisms in packed beds, numerical simulations and coupling analyses were carried out in this study on the unsteady process of fluid flow and heat transfer. A three-dimensional model of the flow channel in the packed bed was established, and the Navier–Stokes equations and Laminar model were adopted for the computations. The effects of the driving force on fluid flow around a particle were studied in detail. The differences in velocity and density distributions under different flow directions due to effect of the aiding flow or opposing flow were intuitively demonstrated and quantitatively analyzed. It was found that the driving force strengthens the fluid flow near the particle surface when aiding flow occurs and inhibits the fluid flow when opposing flow occurs. The boundary layer structure was changed by the natural convection, which in turn influences the field synergy angle. For the aiding flow, the coordination between the velocity and density fields is higher than that for the opposing flow. By analysis the effects of physical parameters on mixed convective heat transfer, it is indicated that with an increase in the fluid-solid temperature difference or the particle diameter, or a decrease in the fluid temperature, the strengthening or inhibiting effect of natural convection on the heat transfer became more significant.  相似文献   

9.
Mixed convection in a horizontal rectangular duct has the same critical Rayleigh number as natural convection in a rectangular cavity for the onset of convection. The linear stability analysis predicts either an odd or an even number of convective rolls to appear depending on the aspect ratio of the cross section. However, it has been shown both experimentally and numerically that an even number of convective rolls appears under supercritical conditions for fully developed mixed convection. The paper first presents an analytical solution for the buoyancy-induced mainstream velocity, w b , at the onset of buoyancy-induced motion in a forced convective flow. Then, a comparison in the initial growth rate of w b is made between the case of an odd and an even number of rolls; which shows the selection of an even number of rolls over an odd number in mixed convection except for low aspect ratio ducts.  相似文献   

10.
The current study addresses the mathematical modeling aspects of transport phenomena in steady, two-dimensional, laminar flow accompanied by heat transfer in a lid-driven differentially heated cavity in presence of radiatively absorbing, emitting and scattering gray medium. The walls of the enclosure are considered to be opaque, diffusive and gray. Mixed convection is the outcome of the interaction of forced convection induced by the moving vertical hot and cold wall with the natural convection induced due to the differentially heated enclosure. Two different orientations of the wall movement have been considered to simulate opposing and aiding mixed convection phenomenon and to study its interaction with radiation. Vorticity-stream function formulation of N–S equation has been employed. The discrete ordinate method has been used in modeling the radiative transport equation followed with finite volume method as discretisation technique. The effect of influencing parameters on fluid flow and heat transfer has been studied.  相似文献   

11.
This study investigates mixed convection heat transfer about a permeable vertical plate in the presence of magneto and thermal radiation effects. The effects of the mixed convection parameter, the radiation–conduction parameter, the surface temperature parameter, the magnetic parameter and the suction/injection parameter on the local skin friction and local heat transfer parameters are presented and analyzed.  相似文献   

12.
13.
The steady laminar incompressible free convective flow of a nanofluid over a permeable upward facing horizontal plate located in porous medium taking into account the thermal convective boundary condition is studied numerically. The nanofluid model used involves the effect of Brownian motion and the thermophoresis. Using similarity transformations the continuity, the momentum, the energy, and the nanoparticle volume fraction equations are transformed into a set of coupled similarity equations, before being solved numerically, by an implicit finite difference numerical method. Our analysis reveals that for a true similarity solution, the convective heat transfer coefficient related with the hot fluid and the mass transfer velocity must be proportional to x −2/3, where x is the horizontal distance along the plate from the origin. Effects of the various parameters on the dimensionless longitudinal velocity, the temperature, the nanoparticle volume fraction, as well as on the rate of heat transfer and the rate of nanoparticle volume fraction have been presented graphically and discussed. It is found that Lewis number, the Brownian motion, and the convective heat transfer parameters increase the heat transfer rate whilst the thermophoresis decreases the heat transfer rate. It is also found that Lewis number and the convective heat transfer parameter enhance the nanoparticle volume fraction rate whilst the thermophoresis parameter decreases nanoparticle volume fraction rate. A very good agreement is found between numerical results of the present article for special case and published results. This close agreement supports the validity of our analysis and the accuracy of the numerical computations.  相似文献   

14.
Coupled heat transfer between laminar forced convection along and conduction inside a flat plate wall is theoretically studied. The laminar convective boundary layer is analyzed by employing the integral technique. The energy equations for the fluid and the plate wall are combined under the condition of the continuity in the temperature and heat flux at the fluid-solid interface. The analysis results in a simple formal solution. Expressions have been obtained for calculating local Nusselt number, wall heat flux and temperature along the plate, all are functions of the local Brun number, Br x , which is a measure of the ratio of the thermal resistance of the plate to that of the convective boundary layer. The results indicate that for Br x ≥0.15, neglecting the plate resistance will results in an error of more than 5% in Nusselt number. Comparison of the present solution with other previous studies has been made. The solution may be of a considerable theoretical and practical interest. Received on 19 August 1998  相似文献   

15.
Important results of a numerical study performed on combined conduction–mixed convection–surface radiation from a vertical channel equipped with three identical flush-mounted discrete heat sources in its left wall are provided here. The channel has walls of identical height with the spacing varied by varying its aspect ratio (AR). The cooling medium is air that is considered to be radiatively transparent. The heat generated in the channel gets conducted along its walls before getting dissipated by mixed convection and radiation. The governing equations for fluid flow and heat transfer are considered without boundary layer approximations and are transformed into vorticity–stream function form and are later normalized. The resulting equations are solved, along with relevant boundary conditions, making use of the finite volume method. The computer code written for the purpose is validated both for fluid flow and heat transfer results with those available in the literature. Detailed parametric studies have been performed and the effects of modified Richardson number, surface emissivity, thermal conductivity and AR on various pertinent results have been looked into. The significance of radiation in various regimes of mixed convection has been elucidated. The relative contributions of mixed convection and radiation in carrying the mandated cooling load have been thoroughly explored.  相似文献   

16.
Natural convection heat transfer in a square cavity induced by heated electronic board (as a thin plate at constant temperature) is investigated using the lattice Boltzmann method. Lattice Boltzmann simulation of natural convective heat transfer in a cavity in the presence of internal straight obstacle has not been considered completely in the literature and this challenge is generally considered to be an open research topic that may require more study. The present work is an extension to our previous paper (see Nazari and Ramzani in Modares. Mech. Eng. 11(2):119–133, 2011) in which the effects of position and dimensions of obstacle on the flow pattern and heat transfer rate are completely studied. A suitable forcing term is represented in the Boltzmann equation. With the representation, the Navier–Stokes equation can be derived from the lattice Boltzmann equation through the Chapman-Enskog expansion. Top and bottom of the cavity are adiabatic; the two vertical walls of the cavity have constant temperatures lower than the plate’s temperature. The study is performed for different values of Grashof number ranging from 103 to 105 for different aspect ratios and position of heated plate. The effect of the position and aspect ratio of heated plate on heat transfer are discussed and the position of the obstacle in which the maximum rate of heat transfer is investigated in both vertical and horizontal situation. The obtained results of the lattice Boltzmann method are validated with those presented in the literature.  相似文献   

17.
The development of two-dimensional thermo-gravitational convection in an elongated horizontal layer bounded by solid surfaces with the bottom instantaneously heated is investigated. The characteristics of the transition from the heat conduction regime to the convective regime are considered. The flow pattern and the heat transfer properties are described from the initial instant, which corresponds to the isothermal fluid at rest, up to the attainment of the steady-state roll-convection regime. A criterial dependence between the Rayleigh number and the nondimensional time of onset of the influence of thermo-gravitational convection on heat transfer is obtained.  相似文献   

18.
The problem of turbulent free convection heat transfer from curved surfaces to non-Newtonian power-law fluids has been investigated using the Nakayama-Koyama solution methodology. The scheme is designed to deal with bodies of arbitrary geometric configurations and hence can be viewed as a generalized version of the Shenoy-Mashelkar approach for turbulent free convection heat transfer from a flat vertical plate to a power-law fluid. The surface wall temperature is allowed to vary in the streamwise direction in an arbitrary fashion, and calculations are carried out for the turbulent free convection about the horizontal circular cylinder and sphere for illustrative purposes. Available theoretical and experimental data have been compared with the predictions of the present analysis and the comparison of results has been found to be reasonably good.  相似文献   

19.
Boundary layer approximation is applied for mixed convection about a horizontal flat plate in a saturated porous medium with aiding external flows. Similarity solutions are obtained, incorporating the variation of permeabilty, for 1) horizontal flat plate at zero angle of attack with constant heat flux; 2) stagnation point flows about horizontal flat plates with wall temperature varying asT wx 2. The temperature and velocity profiles for different values of Ra/(RePr)3/2 and the parameters governing the flow are obtained. The heat transfer rate is calculated and its implications in a geothermal application is discussed. Further, the criteria for pure mixed convection about horizontal flat plates in a porous media are established.  相似文献   

20.
Natural convection over a non-reflecting, non-absorbing, ideally transparent semi-infinite vertical flat plate due to absorption of incident radiation (solar radiation) is considered. The absorbed radiation acts as a distributed source which initiates buoyancy-driven flow and convection in the absorbing layer. The plate when heated by the absorbing fluid loses heat to the surroundings from its external side. Solution of the governing equations of the flow under these circumstances is non-similar because of both the heat source term in the energy equation and the temperature boundary condition at the plate. A local non-similar technique is used to obtain solutions for a wide range of the dimensionless distance along the plate and of the dimensionless loss coefficient to the surroundings. The results show that the temperature distribution has a maximum temperature in the depth of the fluid rather than on the plate. A new definition for a local heat transfer coefficient between the plate and the absorbing fluid is introduced which is based on the local maximum temperature rise in the fluid. A formula to calculate this heat transfer coefficient is given for the anticipated range of the loss coefficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号