首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of the present study is to investigate the flow of the Casson fluid by an inclined stretching cylinder. A heat transfer analysis is carried out in the presence of thermal radiation and viscous dissipation effects. The temperature dependent thermal conductivity of the Casson fluid is considered. The relevant equations are first simplified under usual boundary layer assumptions, and then transformed into ordinary differential equations by suitable transformations. The transformed ordinary differential equations are computed for the series solutions of velocity and temperature. A convergence analysis is shown explicitly. Velocity and temperature fields are discussed for different physical parameters by graphs and numerical values. It is found that the velocity decreases with the increase in the angle of inclination while increases with the increase in the mixed convection parameter. The enhancement in the thermal conductivity and radiation effects corresponds to a higher fluid temperature. It is also found that heat transfer is more pronounced in a cylinder when it is compared with a flat plate. The thermal boundary layer thickness increases with the increase in the Eckert number. The radiation and variable thermal conductivity decreases the heat transfer rate at the surface.  相似文献   

2.
The present paper is concerned with the study of radiation effects on the combined (forced-free) convection flow of an optically dense viscous incompressible fluid over a vertical surface embedded in a fluid saturated porous medium of variable porosity with heat generation or absorption. The effects of radiation heat transfer from a porous wall on convection flow are very important in high temperature processes. The inclusion of radiation effects in the energy equation leads to a highly non-linear partial differential equations which are transformed to a system of ordinary differential equations using non-similarity transformation. These equations are then solved numerically using implicit finite-difference method subject to appropriate boundary and matching conditions. A parametric study of the physical parameters such as the particle diameter-based Reynolds number, the flow based Reynolds number, the Grashof number, the heat generation or absorption co-efficient and radiation parameter is conducted on temperature distribution. The effects of radiation and other physical parameters on the local skin friction and on local Nusselt number are shown graphically. It is interesting to observe that the momentum and thermal boundary layer thickness increases with the radiation and decrease with increase in the Prandtl number.  相似文献   

3.
An axisymmetric magnetohydrodynamic (MHD) boundary layer flow and heat transfer of a fluid over a slender cylinder are investigated numerically. The effects of viscous dissipation, thermal radiation, and surface transverse curvature are taken into account in the simulations. For this purpose, the governing partial differential equations are transformed to ordinary differential equations by using appropriate similarity transformations. The resultant ordinary differential equations along with appropriate boundary conditions are solved by the fourth-order Runge–Kutta method combined with the shooting technique. The effects of various parameters on the velocity and temperature profiles, local skin friction coefficient, and Nusselt number are analyzed.  相似文献   

4.
An analysis of the laminar jet of an incompressible Newtonian fluid emerging from a narrow slot or a circular hole, where the physical properties like viscosity and thermal conductivity depends upon the temperature, is given. Both the cases: the case of In the absence of viscous heat dissipation and the case of In the presence of viscous heat dissipation are considered. The governing partial differential equations of the flow problem are transformed into the ordinary differential equations by group theoretic technique. The Runge–Kutta method is applied to obtained numerical solution of the transformed ordinary differential equations.  相似文献   

5.
The unsteady mixed convection flow of electrical conducting nanofluid and heat transfer due to a permeable linear stretching sheet with the combined effects of an electric field, magnetic field, thermal radiation, viscous dissipation, and chemical reaction have been investigated. A similarity transformation is used to transform the constitutive equations into a system of nonlinear ordinary differential equations.The resultant system of equations is then solved numerically using implicit finite difference method.The velocity, temperature, concentration, entropy generation, and Bejan number are obtained with the dependence of different emerging parameters examined. It is noticed that the velocity is more sensible with high values of electric field and diminished with a magnetic field. The radiative heat transfer and viscous dissipation enhance the heat conduction in the system. Moreover, the impact of mixed convection parameter and Buoyancy ratio parameter on Bejan number profile has reverse effects. A chemical reaction reduced the nanoparticle concentration for higher values.  相似文献   

6.
A mixed convection flow of a third-grade fluid near the orthogonal stagnation point on a vertical surface with slip and viscous dissipation effects is investigated. The governing partial differential equations for the third-grade fluid are converted into a system of nonlinear ordinary differential equations by using a similarity transformation. The effects of various parameters, including the Weissenberg number, third-grade parameter, local Reynolds number, Prandtl number, Eckert number, mixed convection parameter, velocity slip, and thermal slip on the velocity and temperature profiles, local skin friction coefficient, and local Nusselt number are discussed.  相似文献   

7.
Numerical solutions for the free convection heat transfer in a viscous fluid at a permeable surface embedded in a saturated porous medium, in the presence of viscous dissipation with temperature-dependent variable fluid properties, are obtained. The governing equations for the problem are derived using the Darcy model and the Boussinesq approximation (with nonlinear density temperature variation in the buoyancy force term). The coupled non-linearities arising from the temperature-dependent density, viscosity, thermal conductivity, and viscous dissipation are included. The partial differential equations of the model are reduced to ordinary differential equations by a similarity transformation and the resulting coupled, nonlinear ordinary differential equations are solved numerically by a second order finite difference scheme for several sets of values of the parameters. Also, asymptotic results are obtained for large values of | f w|. Moreover, the numerical results for the velocity, the temperature, and the wall-temperature gradient are presented through graphs and tables, and are discussed. It is observed that by increasing the fluid variable viscosity parameter, one could reduce the velocity and thermal boundary layer thickness. However, quite the opposite is true with the non-linear density temperature variation parameter.  相似文献   

8.
The problem of viscous dissipation and thermal dispersion in saturated porous medium is numerically investigated for the case of non-Darcy flow regime. The fluid is induced to flow upward by natural convection as a result of a semi-infinite vertical wall that is immersed in the porous medium and is kept at constant higher temperature. The boundary layer approximations were used to simplify the set of the governing, nonlinear partial differential equations, which were then non-dimensionalized and solved using the finite elements method. The results for the details of the governing parameters are presented and investigated. It is found that the irreversible process of transforming the kinetic energy of the moving fluid to heat energy via the viscosity of the moving fluid (i.e., viscous dissipation) resulted in insignificant generation of heat for the range of parameters considered in this study. On the other hand, thermal dispersion has shown to disperse heat energy normal to the wall more effectively compared with the normal diffusion mechanism.  相似文献   

9.
A boundary layer analysis is performed to study the influence of thermal radiation and buoyancy force on two-dimensional magnetohydrodynamic flow of an incompressible viscous and electrically conducting fluid over a vertical stretching sheet embedded in a porous medium in the presence of inertia effect. The governing system of partial differential equations is first transformed into system of ordinary differential equations using self-similarity transformation. A special form for magnetic field is chosen to obtain the similarity solution. The transformed boundary layer equations are solved numerically for some important values of the physical parameters. The present results are compared with the previously published papers and the results are found to be in excellent agreement. The important features of the flow, heat and mass transfer characteristics for different values of thermal radiation, porous permeability, magnetic field and buoyancy parameters are analyzed and discussed. The effects of various physical parameters on the skin friction coefficient, local Nusselt number and local Sherwood number are also presented. It is found that increase in the value of thermal radiation parameter R 1 increases the skin friction coefficient and Sherwood number whereas reverse trend is seen for the local Nusselt number.  相似文献   

10.
An analysis is presented to investigate the effects of variable viscosities and thermal stratification on the MHD mixed convective heat and mass transfer of a viscous, incompressible, and electrically conducting fluid past a porous wedge in the presence of a chemical reaction. The wall of the wedge is embedded in a uniform nonDarcian porous medium in order to allow for possible fluid wall suction or injection. The governing boundary layer equations are written into a dimensionless form by similarity transformations. The transformed coupled nonlinear ordinary differential equations are solved numerically with finite difference methods. Numerical calculations up to the thirdorder level of truncation are carried out for different values of dimensionless parameters. The results are presented graphically, and show that the flow field and other quantities of physical interest are significantly influenced by these parameters. The results are compared with those available in literature, and show excellent agreement.  相似文献   

11.
The effect of non-linear convection in a laminar three-dimensional Oldroyd-B fluid flow is addressed. The heat transfer phenomenon is explored by considering the non-linear thermal radiation and heat generation/absorption. The boundary layer assumptions are taken into account to govern the mathematical model of the flow analysis. Some suitable similarity variables are introduced to transform the partial differential equations into ordinary differential systems. The Runge-Kutta-Fehlberg fourth-and fifth-order techniques with the shooting method are used to obtain the solutions of the dimensionless velocities and temperature. The effects of various physical parameters on the fluid velocities and temperature are plotted and examined. A comparison with the exact and homotopy perturbation solutions is made for the viscous fluid case, and an excellent match is noted. The numerical values of the wall shear stresses and the heat transfer rate at the wall are tabulated and investigated. The enhancement in the values of the Deborah number shows a reverse behavior on the liquid velocities. The results show that the temperature and the thermal boundary layer are reduced when the nonlinear convection parameter increases. The values of the Nusselt number are higher in the non-linear radiation situation than those in the linear radiation situation.  相似文献   

12.
A boundary layer analysis has been presented to study the combined effects of viscous dissipation, Joule heating, transpiration, heat source, thermal diffusion and Hall current on the hydromagnetic free convection and mass transfer flow of an electrically conducting, viscous, homogeneous, incompressible fluid past an infinite vertical porous plate. The governing partial differential equations of the hydromagnetic free convective boundary layer flow are reduced to non-linear ordinary differential equations and solutions for primary velocity, secondary velocity, temperature and concentration field are obtained for large suction. The expressions for the skin-friction, the heat transfer and the mass transfer are also derived. The results of the study are discussed through graphs and tables for different numerical values of the parameters entered into the equations governing the flow.  相似文献   

13.
An investigation has been conducted on the MHD Casson fluid and heat transfer over an unsteady stretching sheet with viscous dissipation effects. With suitable dimensionless variables, partial differential equations are reduced to ordinary differential equations, which are then solved by the homotopy analysis method. Dependences of flow characteristics on various parameters involved into the equations are obtained.  相似文献   

14.
The influence of partial slip, thermal radiation and temperature dependent fluid properties on the hydro-magnetic fluid flow and heat transfer over a flat plate with convective surface heat flux at the boundary and non-uniform heat source/sink is studied. The transverse magnetic field is assumed as a function of the distance from the origin. Also it is assumed that the fluid viscosity and the thermal conductivity vary as an inverse function and linear function of temperature respectively. Using the similarity transformation, the governing system of non-linear partial differential equations are transformed into similarity non-linear ordinary differential equations and are solved numerically using symbolic software MATHEMATICA 7.0. The numerical values obtained within the boundary layer for the dimensionless velocity, temperature, skin friction coefficient and the Nusselt number are presented through graphs and tables for several sets of values of the parameters. The effects of various physical parameters on the flow and heat transfer characteristics are discussed from the physical point of view.  相似文献   

15.
We study the MHD flow and also heat transfer in a viscoelastic liquid over a stretching sheet in the presence of radiation. The stretching of the sheet is assumed to be proportional to the distance from the slit. Two different temperature conditions are studied, namely (i) the sheet with prescribed surface temperature (PST) and (ii) the sheet with prescribed wall heat flux (PHF). The basic boundary layer equations for momentum and heat transfer, which are non-linear partial differential equations, are converted into non-linear ordinary differential equations by means of similarity transformation. The resulting non-linear momentum differential equation is solved exactly. The energy equation in the presence of viscous dissipation (or frictional heating), internal heat generation or absorption, and radiation is a differential equation with variable coefficients, which is transformed to a confluent hypergeometric differential equation using a new variable and using the Rosseland approximation for the radiation. The governing differential equations are solved analytically and the effects of various parameters on velocity profiles, skin friction coefficient, temperature profile and wall heat transfer are presented graphically. The results have possible technological applications in liquid-based systems involving stretchable materials.  相似文献   

16.
The heat transfer and entropy generation characteristics of the magnetohydrodynamic Casson fluid flow through an inclined microchannel with convective boundary conditions are analyzed.Further,the effects of the viscous forces,Joule heating,heat source/sink,and radiation on the flow are taken into account.The non-dimensional transformations are used to solve the governing equations.Then,the reduced system is resolved by the fourth-fifth order Runge-Kutta-Fehlberg method along with the shooting technique.The effects of different physical parameters on the heat transfer and entropy generation are discussed in detail through graphs.From the perspective of numerical results,it is recognized that the production of entropy can be improved with the Joule heating,viscous dissipation,and convective heating aspects.It is concluded that the production of entropy is the maximum with increases in the Casson parameter,the angle of inclination,and the Hartmann number.Both the Reynolds number and the radiation parameter cause the dual impact on entropy generation.  相似文献   

17.
The flow and heat transfer of a non-Newtonian power-law fluid over a non-linearly stretching surface has been studied numerically under conditions of constant heat flux and thermal radiation and evaluated for the effect of wall slip. The governing partial differential equations are transformed into a set of coupled non-linear ordinary differential equations which are using appropriate boundary conditions for various physical parameters. The remaining set of ordinary differential equations is solved numerically by fourth-order Runge–Kutta method using the shooting technique. The effects of the viscosity, the slip velocity, the radiation parameter, power-law index, and the Prandtl number on the flow and temperature profiles are presented. Moreover, the local skin friction and Nusselt numbers are presented. Comparison of numerical results is made with the earlier published results under limiting cases.  相似文献   

18.
M. Kumari  G. Nath 《Meccanica》2014,49(5):1263-1274
The steady mixed convection flow and heat transfer from an exponentially stretching vertical surface in a quiescent Maxwell fluid in the presence of magnetic field, viscous dissipation and Joule heating have been studied. The stretching velocity, surface temperature and magnetic field are assumed to have specific exponential function forms for the existence of the local similarity solution. The coupled nonlinear ordinary differential equations governing the local similarity flow and heat transfer have been solved numerically by Chebyshev finite difference method. The influence of the buoyancy parameter, viscous dissipation, relaxation parameter of Maxwell fluid, magnetic field and Prandtl number on the flow and heat transfer has been considered in detail. The Nusselt number increases significantly with the Prandtl number, but the skin friction coefficient decreases. The Nusselt number slightly decreases with increasing viscous dissipation parameter, but the skin friction coefficient slightly increases. Maxwell fluid reduces both skin friction coefficient and Nusselt number, whereas buoyancy force enhances them.  相似文献   

19.
Dulal Pal 《Meccanica》2009,44(2):145-158
In this paper an analysis has been made to study heat and mass transfer in two-dimensional stagnation-point flow of an incompressible viscous fluid over a stretching vertical sheet in the presence of buoyancy force and thermal radiation. The similarity solution is used to transform the problem under consideration into a boundary value problem of nonlinear coupled ordinary differential equations containing Prandtl number, Schmidt number and Sherwood number which are solved numerically with appropriate boundary conditions for various values of the dimensionless parameters. Comparison of the present numerical results are found to be in excellent with the earlier published results under limiting cases. The effects of various physical parameters on the boundary layer velocity, temperature and concentration profiles are discussed in detail for both the cases of assisting and opposing flows. The computed values of the skin friction coefficient, local Nusselt number and Sherwood number are discussed for various values of physical parameters. The tabulated results show that the effect of radiation is to increase skin friction coefficient, local Nusselt number and Sherwood number.  相似文献   

20.
The problem of combined conduction-mixed convection-surface radiation from a vertical electronic board provided with three identical flush-mounted discrete heat sources is solved numerically. The cooling medium is air that is considered to be radiatively transparent. The governing equations for fluid flow and heat transfer are converted from primitive variable form to stream function-vorticity formulation. The equations, thus obtained, are normalised and then are converted into algebraic form using a finite volume based finite difference method. The resulting algebraic equations are then solved using Gauss–Seidel iterative method. An optimum grid system comprising 151 grids along the board and 111 grids across the board is chosen. The effects of various parameters, such as modified Richardson number, surface emissivity and thermal conductivity on temperature distribution along the board, maximum board temperature and relative contributions of mixed convection and radiation to heat dissipation are studied in detail. Further, the contributions of free and forced convection components of mixed convection to board temperature distribution and peak board temperature are brought out. The exclusive roles played by surface radiation and buoyancy in the present problem are clearly elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号