首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Dimeric 2-amino-1,8-naphthyridine selectively binds to a G-G mismatch with high affinity (K(d) = 53 nM). We have investigated a binding mechanism of naphthyridine dimer 2 to a G-G mismatch by spectroscopic studies, thermodynamic analysis, and structure-activity studies for the thermal stabilization of the mismatch. 1H NMR spectra of a complex of 2 with 9-mer duplex d(CATCGGATG)2 containing a G-G mismatch showed that all hydrogens in two naphthyridine rings of 2 were observed upfield compared to those of 2 in a free state. The 2D-NOESY experiments showed that each naphthyridine of 2 binds to a guanine in the G-G mismatch within the pi-stack. In CD spectra, a large conformational change of the G-G mismatch-containing duplex was observed upon complex formation with 2. Isothermal calorimetry titration of 2 binding to the G-G mismatch showed that the stoichiometry for the binding is about 1:1 and that the binding is enthalpy-controlled. It is clarified by structure-activity studies that show (i) the linker connecting two naphthyridine rings was essential for the stabilization of the G-G mismatch, (ii) the binding efficiency was very sensitive to the linker structure, and (iii) the binding of two naphthyridines to each one of two Gs in the G-G mismatch is essential for a strong stabilization. These results strongly supported the intercalation of both naphthyridine rings of 2 into DNA base pairs and the formation of a hydrogen bonded complex with the G-G mismatch.  相似文献   

2.
Combining various techniques in solution we proved that Doxorubicin, also called Adriamycin, and Sabarubicin, also known as MEN 10755, bind to the human telomeric sequence, 5'-d[GGG(TTAGGG)(3)]-3' (21-mer), assuming a G-quadruplex structure in the presence of K(+). Complexes of drugs with the 21-mer in 1?:?1 and 2?:?1 stoichiometry coexist in solution. Association constants were obtained from titration experiments and confirmed by isothermal titration calorimetry. The fluorescence of the drugs was quenched upon complexation. UV circular dichroism (CD) spectra of the complexes were characterized by the G-quadruplex signal and indicated that drug binding influences the equilibrium between quadruplex conformations. The visible CD spectra were exclusively due to the drug and show differences in the complexation modes of the two drugs. Spectroscopic and thermodynamic parameters of the 1?:?1 complexes point to drug stacking with the G-quadruplex top or bottom tetrad. Thermodynamic data suggests that the binding of the second drug molecule in the 2?:?1 complex may occur in a groove. Complexation caused a small increase in the thermal stability of the G-quadruplex main conformation, shifting T(m) from 62 to 67 °C.  相似文献   

3.
Chemically induced hairpin formation in DNA monolayers   总被引:5,自引:0,他引:5  
A naphthyridine dimer that binds specifically to G-G mismatches has been used to induce hairpin formation in oligonucleotides immobilized onto chemically modified gold surfaces. Surface plasmon resonance (SPR) imaging measurements of DNA microarrays were used to demonstrate that binding of the naphthyridine dimer to G-G mismatches within the stem portion of an immobilized 42-mer oligonucleotide could be used to induce hairpin formation that prevented hybridization of DNA complementary to the loop sequence. In addition, the selectivity of the naphthyridine dimer for G-G mismatches was verified through SPR imaging measurements of the hybridization adsorption of an 11-mer oligonucleotide to a four-component DNA array of zero- and single-base mismatch sequences.  相似文献   

4.
Four new di-substituted phenanthroline-based compounds a-d have been designed and prepared, and they have been shown to induce the formation of anti-parallel structure of human telomeric G-quadruplex DNA by CD spectra. FRET assay indicates that the melting temperature increases (ΔT(m) values) of G-quadruplex in buffer (pH 7.4) containing 100 mM NaCl are 31.6, 34.6, 17.8 and 32.6 °C for the compounds (1.0 μM) a, b, c and d, respectively. Competitive FRET assay shows that the four compounds exhibit a high G-quadruplex DNA selectivity over duplex DNA. Three of the compounds are the potent telomerase inhibitors and HeLa cell proliferation inhibitors.  相似文献   

5.
We have found that distamycin A can bind to DNA duplexes containing the (6-4) photoproduct, one of the major UV lesions in DNA, despite the changes, caused by photoproduct formation, in both the chemical structure of the base moiety and the local tertiary structure of the helix. A 20-mer duplex containing the target site, AATT.AATT, was designed, and then one of the TT sequences was changed to the (6-4) photoproduct. Distamycin binding to the photoproduct-containing duplex was detected by CD spectroscopy, whereas specific binding did not occur when the TT site was changed to a cyclobutane pyrimidine dimer, another type of UV lesion. Distamycin binding was analyzed in detail using 14-mer duplexes. Curve fitting of the CD titration data and induced CD difference spectra revealed that the binding stoichiometry changed from 1:1 to 2:1 with photoproduct formation. Melting curves of the drug-DNA complexes also supported this stoichiometry.  相似文献   

6.
Electrospray ionization mass spectrometry (ESI-MS) was utilized to investigate the binding affinity and stoichiometry of small molecules with human telomeric G-quadruplex DNA. The binding-affinity order obtained for the (AGGGTT)(4) quadruplex was: Tel01>ImImImbetaDp>PyPyPygammaImImImbetaDp. The specific binding of Tel01 and PyPyPygammaImImImbetaDp in one system consisting of human telomeric G-quadruplex and duplex DNA was observed directly for the first time. This revealed that PyPyPygammaImImImbetaDp has a binding specificity for the duplex DNA, whereas Tel01 selectively recognizes the G-quadruplex DNA. Moreover, both ESI-MS and circular dichroism (CD) spectra indicated that Tel01 favored the formation and stabilization of the antiparallel G-quadruplex, and a structural transition of the (AGGGTT)(4) sequence from a coexistence of parallel and antiparallel G-quadruplexes to a parallel G-quadruplex induced by annealing.  相似文献   

7.
We examined the stability and kinetics of folding of the Oxytricha telomeric repeat sequence (G4T4)4. Fluorescence melting experiments show that this intramolecular quadruplex, which is more stable in potassium- than sodium-containing buffers, shows considerable hysteresis between the melting and annealing profiles, even when heated at a rate of 0.05 degrees C min(-1). Quantitative analysis of this hysteresis, together with temperature-jump relaxation experiments show that the dissociation is exceptionally slow with a half-life of about 10 years at 37 degrees C in the presence of 50 mM K+. The association reaction has a half-life of a few seconds at 37 degrees C, but becomes slower at elevated temperatures consistent with the suggestion that association occurs by a nucleation-zipper mechanism.  相似文献   

8.
A series of 2-phenyl-benzopyranopyrimidine (PBPP) derivatives with alkylamino side chains were synthesized and found to be a new type of highly selective ligand to bind with telomeric G-quadruplex DNA, and their biological properties were reported for the first time. Their interactions with telomeric G-quadruplex DNA were studied with FRET melting, surface plasmon resonance, CD spectroscopy, and molecular modeling. Our results showed that the disubstituted PBPP derivatives could strongly bind to and effectively stabilize the telomeric G-quadruplex structure, and had significant selectivity for G-quadruplex over duplex DNA. In comparison, the mono substituted derivatives had much less effect on the G-quadruplex, suggesting that the disubstitution of PBPP is essential for its interaction with the G-quadruplex. Furthermore, telomerase inhibition of the PBPP derivatives and their cellular effects were studied, and compound 11b was found to be the most promising compound as a telomerase inhibitor and telomeric G-quadruplex binding ligand for further development for cancer treatment.  相似文献   

9.
In the current study, we used a combination of gel electrophoresis, circular dichroism, and UV melting analysis to investigate the structure and stability of G-quadruplexes formed by long telomeric DNAs from Oxytricha and human, where the length of the repeat (n)=4 to 12. We found that the Oxytricha telomeric DNAs, which have the sequence (TTTTGGGG)n, folded into intramolecular and intermolecular G-quadruplexes depending on the ionic conditions, whereas human telomeric DNAs, which have the sequence (TTAGGG)n, formed only intramolecular G-quadruplexes in all the tested conditions. We further estimated the thermodynamic parameters of the intramolecular G-quadruplex. We found that thermodynamic stabilities of G-quadruplex structures of long telomeric DNAs (n=5 to 12) are mostly independent of sequence length, although telomeric DNAs are more stable when n=4 than when n>or=5. Most importantly, when n is a multiple of four, the change in enthalpy and entropy for G-quadruplex formation increased gradually, demonstrating that the individual G-quadruplex units are composed of four repeats and that the individual units do not interact. Therefore, we propose that the G-quadruplexes formed by long telomeric DNAs (n>or=8) are bead-on-a-string structures in which the G-quadruplex units are connected by one TTTT (Oxytricha) or TTA (human) linker. These results should be useful for understanding the structure and function of telomeres and for developing improved therapeutic agents targeting telomeric DNAs.  相似文献   

10.
The force analysis between a macrocyclic hexazole (6OTD) monomer/dimer and telomeric DNA using atomic force microscopy revealed the difference in their binding modes. The 6OTD dimer bound to the G-quadruplex more strongly than the monomer by sandwiching the G-quadruplex.  相似文献   

11.
A series of pyridinium and quaternary ammonium copper corroles has been designed and synthesized. All new compounds have been fully characterized by NMR spectroscopy, high-resolution mass spectrometry, UV/Vis spectrscopy, and elemental analysis. Biochemical studies have indicated that all of these corrole derivatives can stabilize G-quadruplex structures, with corrole 4 being the most effective according to the results of circular dichroism (CD) melting experiments, polymerase chain reaction (PCR) stop assays, and surface plasmon resonance (SPR) experiments. Moreover, both corroles 3 and 4 tend to induce the human telomeric sequence to form hybrid G-quadruplex structures, whereas corroles 8 and 9 are more inclined to induce the human telomeric sequence to form antiparallel G-quadruplex structures.  相似文献   

12.
Structural studies of human telomeric repeats represent an active field of research with potential applications toward the development of specific telomeric quadruplex-targeting drugs for anticancer treatment. To date, high-definition structures were limited to DNA sequences containing up to four GGGTTA repeats. Here we investigate the formation of G-quadruplexes in sequences spanning five to seven human telomeric repeats using NMR, UV, and CD spectroscopy. A (3+1) G-quadruplex with a long propeller loop was isolated from a five-repeat sequence utilizing a guanine-to-inosine substitution. A simple approach of selective site-specific labeling of guanine residues was devised to rigorously determine the folding topology of the oligonucleotide. The same scaffold could be extrapolated to six- and seven-repeat sequences. Our results suggest that long human telomeric sequences consisting of five or more GGGTTA repeats could adopt (3+1) G-quadruplex structures harboring one or more repeat(s) within a single loop. We report on the formation of a Watson-Crick duplex within the long propeller loop upon addition of the complementary strand, demonstrating that the long loop could serve as a new recognition motif.  相似文献   

13.
郭喜明  师同顺 《化学学报》2006,64(12):1218-1222
合成了未见报道的L-谷氨酸桥连的卟啉二联体配体及其铜的金属配合物, 并用红外光谱, 电子吸收光谱, 核磁氢谱, 元素分析和质谱等对化合物的结构加以确认, 研究了配体和金属配合物的CD, 拉曼光谱和荧光光谱的变化. 结果显示在配体中没有出现劈裂的Cotton效应, 而铜配合物中出现了劈裂的正负Cotton效应, 配体的荧光强度强于铜配合物的荧光强度, 在拉曼光谱中, 由于卟啉分子平面的对称性由D2h变为D4h群及其铜离子d轨道的电子效应, 在卟啉配体和铜配合物之间的拉曼光谱有很大差别.  相似文献   

14.
Telomeric repeat-containing RNA (TERRA) is important for telomere regulation, but the structural basis for how TERRA localizes to chromosome ends is unknown. Here we report on studies exploring whether the TERRA G-quadruplex structure is critical for binding to telomeres. We demonstrate that the telomeric protein TRF2 binds TERRA via interactions that necessitate the formation of a G-quadruplex structure rather than the TERRA sequence per se. We also show that TRF2 simultaneously binds TERRA and telomeric duplex or G-quadruplex DNA. These observations suggest that the TERRA G-quadruplex is a key feature of telomere organization.  相似文献   

15.
一种新型结构的金属硫蛋白Pb-MT   总被引:2,自引:0,他引:2  
金属硫蛋白(metalothioneins,简称MTs)是一大类富含巯基的小分子蛋白质(分子量<9000),具有很强的金属结合能力,哺乳动物MT每分子可结合7个二价金属离子或12个一价金属离子.MT的结构一直是科学家关注的热点,其中哺乳动物Cd7-M...  相似文献   

16.
Sun H  Xiang J  Li Q  Liu Y  Li L  Shang Q  Xu G  Tang Y 《The Analyst》2012,137(4):862-867
Recognition of different human telomeric G-quadruplex structures has been a very important task for developing anti-cancer drug design. However, it also is a very challenging question since multiple conformational isomers of telomeric G-quadruplexes coexist under some conditions. Here, three different conformations including parallel, antiparallel, and mixed-type telomeric G-quadruplex structures have been well recognized by quinacrine (QNA) through monitoring its absorption, fluorescence, and fluorescence lifetime spectra. The multiple structures of H22 G-quadruplexes under physiological K(+) conditions could also be easily determined to coexist as mixed-type and antiparallel G-quadruplexes. The recognition mechanism based on the different binding affinity and binding sites has been further elucidated by association with the nuclear magnetic resonance (NMR) results.  相似文献   

17.
Electrospray ionization mass spectrometry (ESI-MS) was used to investigate noncovalent complexes formed between four novel polyamides containing N-methylpyrrole (Py) and N-methylimidazole (Im), and human telomeric DNA. Of the four polyamides investigated, PyPyPygammaImImImbetaDp (3) had the highest binding affinity towards the duplex d(TTAGGGTTAGGG/CCCTAACCCTAA) (D1). Results of competition analysis showed that the polyamides had binding affinities with D1 in the order PyPyPygammaImImImbetaDp (3)>PyPyPyPygammaPyImImPybetaDp (4)>PyPyPybetaImImImbetaDp (2)>ImImImbetaDp (1). MS/MS spectra confirmed that binding between D1 and the hairpin polyamides is more stable than that with the three-ring polyamides. By contrast, in the case of single-stranded d(TTAGGGTTAGGG)(D2), the binding order changes to ImImImbetaDp (1)>PyPyPygammaImImImbetaDp (3)>PyPyPybetaImImImbetaDp (2).  相似文献   

18.
Formation and stabilities of four 14-mer intermolecular DNA triplexes, consisting of third strands with repeating sequence CTCT, CCTT, CTT, or TTT, were studied by electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) in the gas phase. The gas-phase stabilities of the triplexes were compared with their CD spectra and melting behaviors in solution, and parallel correlation between two phases were obtained. In the presence of 20 mM NH(4) (+) (pH 5.5), the formation of the TTT triplex was not detected in both solution and the gas phase. Other triplexes showed the same order, CTCT > CCTT > CTT, of ion abundances in mass spectra and T(m) values in solution. The more stable triplexes are those that contained higher percentage of C(+).GC triplets and an alternating CT sequence. However, the CCTT with the same C(+).GC triplets as the CTCT showed a higher stability than the latter during the gas-phase dissociation. Furthermore, a biphasic triplex-to-duplex-to-single transition was detected in the gas phase, while a monophasic triplex-to-single dissociation was observed in solution. The present results reveal that hydrogen bonds and electrostatic interactions dominate in the gas phase, while base stacking and hydrophobic interactions dominate in solution to stabilize the triplexes. Moreover, weak acidic conditions (pH 5-6) promote the formation of the parallel triplexes.  相似文献   

19.
The human telomeric sequence d[T(2)AG(3)](4) has been demonstrated to form different types of G-quadruplex structures, depending upon the incubation conditions. For example, in sodium (Na(+)), a basket-type G-quadruplex structure is formed. In this investigation, using circular dichroism (CD), biosensor-surface plasmon resonance (SPR), and a polymerase stop assay, we have examined how the addition of different G-quadruplex-binding ligands affects the conformation of the telomeric G-quadruplex found in solution. The results show that while telomestatin binds preferentially to the basket-type G-quadruplex structure with a 2:1 stoichiometry, 5,10,15,20-[tetra-(N-methyl-3-pyridyl)]-26-28-diselena sapphyrin chloride (Se2SAP) binds to a different form with a 1:1 stoichiometry in potassium (K(+)). CD studies suggest that Se2SAP binds to a hybrid G-quadruplex that has strong parallel and antiparallel characteristics, suggestive of a structure containing both propeller and lateral, or edgewise, loops. Telomestatin is unique in that it can induce the formation of the basket-type G-quadruplex from a random coil human telomeric oligonucleotide, even in the absence of added monovalent cations such as K(+) or Na(+). In contrast, in the presence of K(+), Se2SAP was found to convert the preformed basket G-quadruplex to the hybrid structure. The significance of these results is that the presence of different ligands can determine the type of telomeric G-quadruplex structures formed in solution. Thus, the biochemical and biological consequences of binding of ligands to G-quadruplex structures found in telomeres and promoter regions of certain important oncogenes go beyond mere stabilization of these structures.  相似文献   

20.
The folding of the single-stranded 3' end of the human telomere into G-quadruplex arrangements inhibits the overhang from hybridizing with the RNA template of telomerase and halts telomere maintenance in cancer cells. The ability to thermally stabilize human telomeric DNA as a four-stranded G-quadruplex structure by developing selective small molecule compounds is a therapeutic path to regulating telomerase activity and thereby selectively inhibit cancer cell growth. The development of compounds with the necessary selectivity and affinity to target parallel-stranded G-quadruplex structures has proved particularly challenging to date, relying heavily upon limited structural data. We report here on a structure-based approach to the design of quadruplex-binding ligands to enhance affinity and selectivity for human telomeric DNA. Crystal structures have been determined of complexes between a 22-mer intramolecular human telomeric quadruplex and two potent tetra-substituted naphthalene diimide compounds, functionalized with positively charged N-methyl-piperazine side-chains. These compounds promote parallel-stranded quadruplex topology, binding exclusively to the 3' surface of each quadruplex. There are significant differences between the complexes in terms of ligand mobility and in the interactions with quadruplex grooves. One of the two ligands is markedly less mobile in the crystal complex and is more quadruplex-stabilizing, forming multiple electrostatic/hydrogen bond contacts with quadruplex phosphate groups. The data presented here provides a structural rationale for the biophysical (effects on quadruplex thermal stabilization) and biological data (inhibition of proliferation in cancer cell lines and evidence of in vivo antitumor activity) on compounds in this series and, thus, for the concept of telomere targeting with DNA quadruplex-binding small molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号