首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Photosystems, PSI and PSII isolated from Thermosynechococcus elongatus were successfully immobilized on a TiO2 nanostructured film for use in dye-sensitized biosolar cells (DSBCs). The photosystem complexes were also immobilized on an ITO electrode modified with 3-aminopropyltriethoxysilane by utilizing the interactions between the electrode and the surface of the PSI or PSII polypeptide. Illumination of the PSI and PSII complexes immobilized on the ITO electrode resulted in action spectra in the presence of methyl viologen, which corresponded to the absorption spectra of the complexes. Compared with the ITO electrode, PSI or PSII complexes assembled on the TiO2 electrode had much higher energy-conversion efficiency in the presence of an iodide/triiodide redox system of an ionic-liquid-based electrolyte. This could have interesting applications in the development of DSBCs.  相似文献   

2.
The molecular oxygen we breathe is produced from water-derived oxygen species bound to the Mn4CaO5 cluster in photosystem II (PSII). Present research points to the central oxo-bridge O5 as the ‘slow exchanging substrate water (Ws)’, while, in the S2 state, the terminal water ligands W2 and W3 are both discussed as the ‘fast exchanging substrate water (Wf)’. A critical point for the assignment of Wf is whether or not its exchange with bulk water is limited by barriers in the channels leading to the Mn4CaO5 cluster. In this study, we measured the rates of H216O/H218O substrate water exchange in the S2 and S3 states of PSII core complexes from wild-type (WT) Synechocystis sp. PCC 6803, and from two mutants, D1-D61A and D1-E189Q, that are expected to alter water access via the Cl1/O4 channels and the O1 channel, respectively. We found that the exchange rates of Wf and Ws were unaffected by the E189Q mutation (O1 channel), but strongly perturbed by the D61A mutation (Cl1/O4 channel). It is concluded that all channels have restrictions limiting the isotopic equilibration of the inner water pool near the Mn4CaO5 cluster, and that D61 participates in one such barrier. In the D61A mutant this barrier is lowered so that Wf exchange occurs more rapidly. This finding removes the main argument against Ca-bound W3 as fast substrate water in the S2 state, namely the indifference of the rate of Wf exchange towards Ca/Sr substitution.

Access to the oxygen-evolving complex in photosynthesis is restricted by specific barriers in the channels connecting the Mn4CaO5 catalyst with bulk water. Together with other recent data, this finding allows assigning the two substrate waters.  相似文献   

3.
4.
The regulation of extracellular enzymes is of great biotechnological interest. We studied the regulatory role of the URE 2 gene on the periplasmic invertase of Saccharomyces cerevisiae, because its periplasmic asparaginase is regulated by the URE2/GLN3 system. Enzymatic activity was measured in the isogenic strains P40-1B, the ure2 mutant P40-3C, and the P40-3C strain transformed with the pIC-CS plasmid carrying the URE2 gene. The assays were performed using midlog and stationary phase cells and nitrogen-starved cells from these growth phases. During exponential growth, the level of invertase in both wild-type and ure 2 mutant cells was comparable. However, the invertase activity in ure2 mutant cells from stationary phase was sixfold lower than in the wild-type cells. When P40-3C cells were transformed with the pIC-CS plasmid, the wild-type phenotype was restored. On nitrogen starvation in the presence of sucrose, the invertase activity in wild-type cells from midlog phase decreased three times, whereas in stationary cells, the activity decreased eight times. However, invertase activity doubled in ure 2 mutant cells from both phases. When these cells were trans-formed with the aforementioned plasmid, the wild-type phenotype was restored, although a significant invertase decrease in stationary cells was not observed. These results suggested that the URE2 protein plays a role in invertase activity.  相似文献   

5.
Thermal analysis was used to study the influence of CaCl2 and urea as possible chemical additives inhibiting coal oxidation process at temperatures 100?C300?°C. Weight increase due to oxygen chemisorption and corresponding amount of evolved heat were evaluated as main indicative parameters. TA experiments with different heating rates enabled determination of effective activation energy E a as a dependence of conversion. In the studied range of temperatures, the interaction of oxygen with (untreated) coal was confirmed rather as a complex process giving effective activation energies changing continuously from 70?kJ?mol?1 (at about 100?°C) to ca. 180?kJ?mol?1 at temperatures about 250?°C. The similar trend in E a was found when chemical agents were added to the coal. However, while the presence of CaCl2 leads to higher values of the effective activation energies during the whole temperature range, urea causes increase in E a only at temperatures below 200?°C. Exceeding the temperature 200?°C, the presence of urea in the coal induces decrease in activation energy of the oxidation process indicating rather catalysing than inhibiting action on coal oxidation. Thus, CaCl2 can only be recommended as a ??real?? inhibitor affecting interaction of coal with oxygen at temperatures up to 300?°C.  相似文献   

6.
We carried out a Lie group study of the micro-Raman tissue spectra of the Gurken gradients of Drosophila oogenesis. Matrix representations (2?×?2) resulting from the polarized Raman scattering were employed to assess the roles of the ligand-receptor complexes in follicle cell. It was found that the Gurken expansion caused by overexpressing Dally-like protein (Dlp) revealed an X 1 Lie point symmetry, while the Gurken distribution in the wild-type egg showed an X 23 Lie point symmetry. The correlation between the corresponding continuous symmetry operations and the observed Gurken localization were a corroboration of the significance of the Lie group analysis by means of the reaction?Cdiffusion equation in a prolate spheroidal coordinate system. These investigations suggested that the group-theoretical approach can be applied to characterize the fluctuating asymmetry and the developmental stability in a wide variety of organisms.  相似文献   

7.
Effects of exogenously added spermidine (Spd) to UV-treated Synechocystis sp. PCC 6803 cultures on their growth, intracellular pigments, hydrogen peroxide (H2O2), malonaldehyde (MDA) contents, and antioxidant enzymes were investigated. Growth inhibition of cells subjected to 1-h UV-A, UV-B, and UV-C irradiation was abolished in culture added with 0.5 mM Spd. Both chlorophyll a and carotenoid contents were decreased under UV radiations in cells grown in BG11 medium. However, the contents of these two pigments were slightly increased under UV radiations in Spd-supplemented cells with the consequence of enhanced oxygen evolution. Intracellular levels of H2O2 and MDA generated during 1-h UV irradiation were decreased when the culture medium contained 0.5 mM Spd. The antioxidative enzymes, catalase, and superoxide dismutase had a little or no response towards Spd supplementation under UV irradiation except for some increase in superoxide dismutase activity under UV-C. Total intracellular polyamines were decreased during Spd supplementation under UV stress; however, the cells showed a drastic increase in the amount of Put under this condition. Altogether, exogenous Spd is likely a potential compound that enables Synechocystis cells to cope with UV stress.  相似文献   

8.
Chemical equilibria in the heterogeneous system Tb(NO3)3-H2O, physiological saline solutions containing terbium nitrate, and unfractionated heparin ((H4L) Tb(NO3)3-H4L-H2O-NaCl), and solutions containing calcium chloride, terbium nitrate, and unfractionated heparin (CaCl2-Tb(NO3)3-H4L-H2O-NaCl) were studied by mathematical modeling and pH titration. A physicochemical model was designed for two-phase equilibria in the system Tb(NO3)3-H2O, which consists of an aqueous solution and a solid phase of precipitated terbium hydroxide. Formation constants were calculated for terbium hydroxide ions Tb(OH) i (3?i)+ (i = 1, 2, 3) in an aqueous phase, and a correlation was found between the amount of precipitated Tb(OH) 3 i and pH. The four-component solution Tb(NO3)3-H4L-H2O-NaCl in the range 2.3 ≤ pH ≤ 10.4 is homogeneous; as a result of its investigation, the formation constants were ascertained for significant terbium complexes with heparin: TbL, TbHL 2 4 , and Tb(OH)2L3?. Chemical equilibria in the five-component solution CaCl2-Tb(NO3)3-H4L-H2O-NaCl were modeled proceeding from the models developed for equilibria in the four-component solution subsystems Tb(NO3)3-H4L-H2O-NaCl and CaCl2-H4L-H2O-NaCl. The modeling showed that the Tb3+ ion is an efficient competitive complex former to the Ca2+ ion, which forms complexes with heparin, and decreases tenfold the concentration of the major complex NaCaL at 6.8 ≤ pH ≤ 7.4 (the pH range of blood plasma stability).  相似文献   

9.
Cu(nor)2·H2O (1), Zn(nor)2·4H2O (2), Ni(nor)2·2H2O (3), [Cu(nor)(phen)]NO3·4H2O (4), [Zn(nor)(phen)]NO3·2H2O (5), and [Ni(nor)(phen)]NO3·3H2O (6) were synthesized and their action on Tetrahymena growth was studied by microcalorimetry. The growth constant (k), inhibitory ratio (I), and half-inhibiting concentration (IC50) were calculated, which showed that the complexes had a strong inhibitory effect on Tetrahymena. All these complexes can inhibit the growth of Tetrahymena more strongly than norfloxacin. The norfloxacin?Cmetal complexes exhibited better inhibitory activity than nor?Cphen?Cmetal complexes. The power?Ctime curves of Tetrahymena growth in the presence of norfloxacin were also measured. It was found that all complexes showed higher inhibitory activity than norfloxacin. And the inhibitory mechanism was discussed preliminarily. The diverse inhibition may be due to the ability of the complexes to penetrate into cells and the effect of these complexes on the nucleic acid. Microcalorimetry has been used extensively in many biological and chemical investigations as a universal, non-destructive, continuously running, and highly sensitive tool.  相似文献   

10.
Metal complexes having the general composition [MCl2(H2O)2(L)2]·yH2O (where y?=?1?C3, M?=?Mn(II), Cu(II), Co(II), Ni(II), and Zn(II) and L?=?miconazole drug?=?MCNZ) and [MCl2(H2O)2(L)2]Cl·3H2O (where M?=?Cr(III) and Fe(III)) have been synthesized. All the synthesized complexes were identified and confirmed by elemental analyses, IR, diffused reflectance, and thermal analyses (TG and DTA) techniques as well as molar conductivity and magnetic moment measurements. The molar conductance data reveals that bivalent metal complexes are non-electrolytes while Cr(III) and Fe(III) complexes are electrolytes and of 1:1 type. IR spectral studies reveal that MCNZ is coordinated to the metal ions in a neutral unidentate manner with N donor site of the imidazole-N. On the basis of magnetic and solid reflectance spectral studies, an octahedral geometry has been assigned for the complexes. Detailed studies of the thermal properties of the complexes were investigated by thermogravimetry (TG) and differential thermal analyses (DTA) techniques and the activation thermodynamic parameters are calculated using Coats?CRedfern method. The free MCNZ drug and its complexes were also evaluated against bacterial species (P. aeruginosa, S. aureus, B. subtilis, E. Coli) and fungi (A. fumigatus, P. italicum, and C. albicans) in vitro. The activity data show that the metal complexes have higher biological activity than the parent MCNZ drug.  相似文献   

11.
Photosystem II (PSII) has attracted a lot of attention for use in the construction of artificial photosynthetic materials due to its high activity of oxidation of water molecules. However, the robustness of PSII needs to be improved for in vitro application. In this study, we incorporated PSII (Thermosynechococcus vulcanus) into various phospholipid membranes to examine the activity and durability of oxygen evolution. PSII was incorporated into anionic 1,2-dioleoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (PSII-DOPG), zwitterionic 1,2-dioleoyl-sn-glycero-3-phosphocholine (PSII-DOPC), and cationic 1,2-dioleoyl-sn-glycero-3-ethylphosphocholine (PSII-EDOPC). Structural integrity of PSII was examined by absorption and fluorescence spectroscopy. Compared with PSII dissolved in a micellar solution of n-dodecyl-β-d-maltoside (PSII-micelle), durability of PSII-DOPC and PSII-DOPG were enhanced by 1.3- and 1.5-fold, respectively. The activity and durability of PSII-EDOPC was significantly low. Lipid-dependent activity and durability were discussed in terms of kinetic parameters of V max and K m, and inhibition of the electron acceptor, phenyl-p-benzoquinone.  相似文献   

12.

Paradoxical Raf activation via Raf dimerization is a major drawback of wild/mutant B-Raf inhibitors. Herein, we report that CB-1 a novel, potent B-Raf/c-Raf dual inhibitor, effective against colon cancer cells, irrespective of their genetic status. High-throughput virtual screening of the ChemBridge library against wild B-Raf (B-RafWT), mutant B-Raf (B-RafV600E), and c-Raf was performed using an automated protocol with the AutoDock-VINA. Caco-2 and HT-29 cells were used. Of the 23,365 compounds screened computationally, CB-1 showed the highest binding energy towards B-RafWT with a ΔGbinding score of ? 13.0 kcal/mol. The compound was also predicted to be effective against B-RafV600E and c-Raf molecules with ΔGbinding energies of ? 10.6 and ? 10.1 kcal/mol, respectively. The compound inhibited B-RafWT, B-RafV600E and c-Raf kinases with IC50 values of 27.13, 51.70, and 40.23 nM, respectively. The GI50 value of CB-1 was 247.9 nM in B-RafWT-expressing Caco-2 cells and 352.4 nM in B-RafV600E-expressing HT-29 cells. Dose-dependent increases in total apoptosis and G1 cell cycle phase arrest was observed in CB-1-treated colon cancer cells. The compound decreased B-Raf expression in both wild and mutant colon cancer cells. CB-1, a novel, potent dual B-Raf/c-Raf inhibitor was effective against colon cancer cells bearing wild-type and mutant variants of B-Raf expression.

  相似文献   

13.
In the present study, we report the optimisation of batch conditions for improved α-1,4-glucan-glucanohydrolase (GGH) secretion by a nitrous acid (NA)-treated Bacillus alcalophilus. The wild (isolate GCB-18) and NA-derivative (mutant GCBNA-4) were grown in a medium containing 10 g/L nutrient broth, 10 g/L starch, 5 g/L lactose, 2 g/L ammonium sulphate, 2 g/L CaCl2 and phosphate buffer (pH 7.6). Sodium dodecyl sulphate (SDS) was used as an enzyme inducer while batch fermentations were carried out at 40 °C. The mutant produced GGH in 40 h which was 15-fold higher than the wild in presence of SDS. Thermodynamic studies revealed that the mutant culture exhibited the capability for improved enzyme activity over a broad range of temperature (35–70 °C). The enzyme was purified by cation-exchange column chromatography with ~80 % recovery. The performance of fuzzy-logic system control was found to be highly promising for the improved substrate conversion rate. The correlation (1.045E?+?0025) among variables demonstrated the model terms as highly significant indicating commercial utility of the culture used (P?<?0.05).  相似文献   

14.
Two new Mn(II) complexes [Mn(Hmbhce)2(o-phen)] (1) and [Mn(Hmbhce)2(bpy)] (2) based on N??-(2-methoxybenzoyl)hydrazine carbodithioic acid ethyl ester (H2mbhce) have been synthesized by reacting Mn(OAc)2·4H2O with H2mbhce in the presence of o-phen/bpy. The complexes have been characterized by elemental analyses, magnetic susceptibility measurement, IR, UV?CVis and single crystal X-ray data. Both complexes [Mn(Hmbhce)2(o-phen)] and [Mn(Hmbhce)2(bpy)] crystallize in monoclinic system with space group P 21/c and P 21/n, respectively. The single crystal X-ray structures of 1 and 2 show that the Mn(II) center is bonded with two (Hmbhce)? through carbonyl oxygen and deprotonated hydrazinic nitrogen, plus two nitrogen atoms from one o-phen/bpy co-ligand. The crystal structures of complexes 1 and 2 are stabilized by weak intramolecular N?CH···O hydrogen bonding and C?CH···?? interactions giving supramolecular architectures.  相似文献   

15.
(dipy)Ni(COD) react with duroquinone (Dch) or anthraquinone (Ach) to yield the complexes (dipy)Ni(η4 -Dch) or (dipy)Ni(η4 -Ach). Chloranil (CA), however, reacts as an oxidant and depending on the temperature (dipy)NiII(CA2-) or following an oxidative addition (dipy)NiII(Cl)(CAH-)(THF) are formed.By substitution of (Cy3P)2Ni(C2H4) the complexes (Cy3P)Ni(η4-Dch) or (Cy3P)2Ni(η4 -Ach) are obtained, whereas a 1,1-coupling of quinone and the coordinated phosphine proceeds during the reaction between p-benzoquinone of chloranil and (Cy3P)2Ni(C2H4). By ESR studies it was demonstrated that with Ni(Cy3P?Ch)2 or Ni(Cy3P?CA)2, resp., complexes are obtained, in which radical anions, which are derived from the product of this 1,1-coupling, are coordinated to low-spin nickel (II). There is a significant difference between (Cy3P)2Ni(C2H4) and the analogous platinum or palladium complexes, which are substituted by p-benzoquinone while an oxidative addition proceeds with chloranil.  相似文献   

16.
Mutant forms of the firefly (Luciola mingrela) luciferase with point mutations Cys62Ser and Cys146Ser were obtained by site-directed mutagenesis. The mutations did not affect the catalytic activity and fluorescence spectra of the enzyme. The rate constants of the fast (k 1) and slow (k 2) stages of thermoinactivation of the wild-type and mutant enzymes were determined at 37°C in the absence and presence of 12 mM dithiothreitol (DTT). The thermostability of the mutant forms of luciferase increased several times compared to the wild-type enzyme. In the presence of DTT, k 2 of the wild-type enzyme decreased three times whereas neither k 1 nor k 2 of the mutant forms changed. It was concluded that amino acid residues Cys62 and Cys146 play a major role in luciferase inactivation and that their substitution with Ser stabilizes the enzyme.  相似文献   

17.
Complexation in the Co(II)-phosphonomethylaminosuccinic acid (H4L) system in aqueous solutions at component ratios of 1 : 1 and 1 : 2 and c Co(II) = 1 × 10?2 mol/L was studied by electronic absorption spectroscopy. The formation of various protonated complexes of the general formula Co(H n L) m (OH) q (n = 3?0; m = 1?C2; q = 0?C2) was found, and their stability constants and distribution diagrams were calculated. It was demonstrated that the bis complexes have the structure of a distorted octahedron, and the octahedron ?? tetrahedron rearrangement of the coordination polyhedron occurs in the equimolar complexes at pH > 8.  相似文献   

18.
Several (diolefin)M(A) complexes (M = Rh, Ir) were prepared, where AH is 1-phenyl-3-methyl- 4-benzoylpyrazolone-5, a very stable asymmetric analogue of acetylacetone. In these complexes the diolefin could be replaced by one mole of (Ph2PCH2CH2)2, two of CO or of PPh3, or three of CNBut, while 1,10-phenanthroline displaced the chelating ligand to yield [(cyclooctadiene)Rh(phen)]+ (A)?. Some compounds X?Y (X?Y = iodine or MeI) added oxidatively yielding the corresponding trivalent species. Using 31P NMR spectra the presence of the expected steric isomers was detected in (Ph3P)(CO)Rh(A) and in (Ph3P) (CO)Rh(A)(X)(Y).  相似文献   

19.
We evaluated photosystem II (PSII) functionality in potato plants (Solanum tuberosum L.) before and after a 15 min feeding by the leaf miner Tuta absoluta using chlorophyll a fluorescence imaging analysis combined with reactive oxygen species (ROS) detection. Fifteen minutes after feeding, we observed at the feeding zone and at the whole leaf a decrease in the effective quantum yield of photosystem II (PSII) photochemistry (ΦPSII). While at the feeding zone the quantum yield of regulated non-photochemical energy loss in PSII (ΦNPQ) did not change, at the whole leaf level there was a significant increase. As a result, at the feeding zone a significant increase in the quantum yield of non-regulated energy loss in PSII (ΦNO) occurred, but there was no change at the whole leaf level compared to that before feeding, indicating no change in singlet oxygen (1O2) formation. The decreased ΦPSII after feeding was due to a decreased fraction of open reaction centers (qp), since the efficiency of open PSII reaction centers to utilize the light energy (Fv′/Fm′) did not differ before and after feeding. The decreased fraction of open reaction centers resulted in increased excess excitation energy (EXC) at the feeding zone and at the whole leaf level, while hydrogen peroxide (H2O2) production was detected only at the feeding zone. Although the whole leaf PSII efficiency decreased compared to that before feeding, the maximum efficiency of PSII photochemistry (Fv/Fm), and the efficiency of the water-splitting complex on the donor side of PSII (Fv/Fo), did not differ to that before feeding, thus they cannot be considered as sensitive parameters to monitor biotic stress effects. Chlorophyll fluorescence imaging analysis proved to be a good indicator to monitor even short-term impacts of insect herbivory on photosynthetic function, and among the studied parameters, the reduction status of the plastoquinone pool (qp) was the most sensitive and suitable indicator to probe photosynthetic function under biotic stress.  相似文献   

20.
Conformational diversity is an often neglected aspect in computational studies of transition metal complexes, even when relatively large systems are involved. The importance of conformational searches is illustrated through the analysis of the errors that could be caused by a wrong choice of conformers in the computational study of the Suzuki?CMiyaura cross-coupling between CH2=CHBr and CH2=CHB(OH)2 catalyzed by [(PPh3)2Pd] or [(P(i-Pr)3)2Pd]. The error bars associated with conformational diversity of the [(PPh3)2Pd] catalyst range between 0.3 and 6.7?kcal/mol, the values growing up to 11.4?kcal/mol when the more flexible [(P(i-Pr)3)2Pd] catalyst is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号