首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Semidefinite programs are a class of optimization problems that have been studied extensively during the past 15 years. Semidefinite programs are naturally related to linear programs, and both are defined using deterministic data. Stochastic programs were introduced in the 1950s as a paradigm for dealing with uncertainty in data defining linear programs. In this paper, we introduce stochastic semidefinite programs as a paradigm for dealing with uncertainty in data defining semidefinite programs.The work of this author was supported in part by the U.S. Army Research Office under Grant DAAD 19-00-1-0465. The material in this paper is part of the doctoral dissertation of this author in preparation at Washington State University.  相似文献   

2.
We study a class of mixed-integer programs for solving linear programs with joint probabilistic constraints from random right-hand side vectors with finite distributions. We present greedy and dual heuristic algorithms that construct and solve a sequence of linear programs. We provide optimality gaps for our heuristic solutions via the linear programming relaxation of the extended mixed-integer formulation of Luedtke et al. (2010) [13] as well as via lower bounds produced by their cutting plane method. While we demonstrate through an extensive computational study the effectiveness and scalability of our heuristics, we also prove that the theoretical worst-case solution quality for these algorithms is arbitrarily far from optimal. Our computational study compares our heuristics against both the extended mixed-integer programming formulation and the cutting plane method of Luedtke et al. (2010) [13]. Our heuristics efficiently and consistently produce solutions with small optimality gaps, while for larger instances the extended formulation becomes intractable and the optimality gaps from the cutting plane method increase to over 5%.  相似文献   

3.
In this paper a linear programming-based optimization algorithm called the Sequential Cutting Plane algorithm is presented. The main features of the algorithm are described, convergence to a Karush–Kuhn–Tucker stationary point is proved and numerical experience on some well-known test sets is showed. The algorithm is based on an earlier version for convex inequality constrained problems, but here the algorithm is extended to general continuously differentiable nonlinear programming problems containing both nonlinear inequality and equality constraints. A comparison with some existing solvers shows that the algorithm is competitive with these solvers. Thus, this new method based on solving linear programming subproblems is a good alternative method for solving nonlinear programming problems efficiently. The algorithm has been used as a subsolver in a mixed integer nonlinear programming algorithm where the linear problems provide lower bounds on the optimal solutions of the nonlinear programming subproblems in the branch and bound tree for convex, inequality constrained problems.  相似文献   

4.
《Optimization》2012,61(6):809-823
By perturbing properly a linear program to a separable quadratic program it is possible to solve the latter in its dual variable space by iterative techniques such as sparsity-preserving SOR (successive overtaxation techniques). In this way large sparse linear programs can be handled.

In this paper we give a new computational criterion to check whether the solution of the perturbed quadratic program provides the least 2-norm solution of the original linear program. This criterion improves on the criterion proposed in an earlier paper.

We also describe an algorithm for solving linear programs which is based on the SOR methods. The main property of this algorithm is that, under mild assumptions, it finds the least 2-norm solution of a linear program in a finite number of iteration.s  相似文献   

5.
This paper deals with the so-called total ill-posedness of linear optimization problems with an arbitrary (possibly infinite) number of constraints. We say that the nominal problem is totally ill-posed if it exhibits the highest unstability in the sense that arbitrarily small perturbations of the problem’s coefficients may provide both, consistent (with feasible solutions) and inconsistent problems, as well as bounded (with finite optimal value) and unbounded problems, and also solvable (with optimal solutions) and unsolvable problems. In this paper we provide sufficient conditions for the total ill-posedness property exclusively in terms of the coefficients of the nominal problem.  相似文献   

6.
Semidefinite programs are convex optimization problems arising in a wide variety of applications and are the extension of linear programming. Most methods for linear programming have been generalized to semidefinite programs. Just as in linear programming, duality theorem plays a basic and an important role in theory as well as in algorithmics. Based on the discretization method and convergence property, this paper proposes a new proof of the strong duality theorem for semidefinite programming, which is different from other common proofs and is more simple.  相似文献   

7.
This paper presents two linear cutting plane algorithms that refine existing methods for solving disjoint bilinear programs. The main idea is to avoid constructing (expensive) disjunctive facial cuts and to accelerate convergence through a tighter bounding scheme. These linear programming based cutting plane methods search the extreme points and cut off each one found until an exhaustive process concludes that the global minimizer is in hand. In this paper, a lower bounding step is proposed that serves to effectively fathom the remaining feasible region as not containing a global solution, thereby accelerating convergence. This is accomplished by minimizing the convex envelope of the bilinear objective over the feasible region remaining after introduction of cuts. Computational experiments demonstrate that augmenting existing methods by this simple linear programming step is surprisingly effective at identifying global solutions early by recognizing that the remaining region cannot contain an optimal solution. Numerical results for test problems from both the literature and an application area are reported.  相似文献   

8.
A method of constructing test problems with known global solution for a class of reverse convex programs or linear programs with an additional reverse convex constraint is presented. The initial polyhedron is assumed to be a hypercube. The method then systematically generates cuts that slice the cube in such a way that a prespecified global solution on its edge remains intact. The proposed method does not require the solution of linear programs or systems of linear equations as is often required by existing techniques.The author would like to thank Prof. S. E. Jacobsen for his valuable remarks on initial drafts of this paper and the referees for their constructive suggestions.  相似文献   

9.
A procedure is proposed for the parametric linear programming problem where all the coefficients are linear or polynomial functions of a scalar parameter. The solution vector and the optimum value are determined explicitly as rational functions of the parameter. In addition to standard linear programming technique, only the determination of eigenvalues is required. The procedure is compared to those by Dinkelbach and Zsigmond, and a numerical example is given.  相似文献   

10.
A family of complementarity problems is defined as extensions of the well-known linear complementarity problem (LCP). These are:
(i)  second linear complementarity problem (SLCP), which is an LCP extended by introducing further equality restrictions and unrestricted variables;
(ii)  minimum linear complementarity problem (MLCP), which is an LCP with additional variables not required to be complementary and with a linear objective function which is to be minimized;
(iii)  second minimum linear complementarity problem (SMLCP), which is an MLCP, but the nonnegative restriction on one of each pair of complementary variables is relaxed so that it is allowed to be unrestricted in value.
A number of well-known mathematical programming problems [namely, quadratic programming (convex, nonconvex, pseudoconvex, nonconvex), linear variational inequalities, bilinear programming, game theory, zero-one integer programming, fixed-charge problem, absolute value programming, variable separable programming] are reformulated as members of this family of four complementarity problems. A brief discussion of the main algorithms for these four problems is presented, together with some computational experience.  相似文献   

11.
The linear state feedback synthesis problem for uncertain linear systems with state and control constraints is considered. We assume that the uncertainties are present in both the state and input matrices and they are bounded. The main goal is to find a linear control law assuring that both state and input constraints are fulfilled at each time. The problem is solved by confining the state within a compact and convex positively invariant set contained in the allowable state region.It is shown that, if the controls, the state, and the uncertainties are subject to linear inequality constraints and if a candidate compact and convex polyhedral set is assigned, a feedback matrix assuring that this region is positively invariant for the closed-loop system is found as a solution of a set of linear inequalities for both continuous and discrete time design problems.These results are extended to the case in which additive disturbances are present. The relationship between positive invariance and system stability is investigated and conditions for the existence of positively invariant regions of the polyhedral type are given.The author is grateful to Drs. Vito Cerone and Roberto Tempo for their comments.  相似文献   

12.
This paper develops a wholly linear formulation of the posynomial geometric programming problem. It is shown that the primal geometric programming problem is equivalent to a semi-infinite linear program, and the dual problem is equivalent to a generalized linear program. Furthermore, the duality results that are available for the traditionally defined primal-dual pair are readily obtained from the duality theory for semi-infinite linear programs. It is also shown that two efficient algorithms (one primal based and the other dual based) for geometric programming actually operate on the semi-infinite linear program and its dual.  相似文献   

13.
We develop a duality theory for minimax fractional programming problems in the face of data uncertainty both in the objective and constraints. Following the framework of robust optimization, we establish strong duality between the robust counterpart of an uncertain minimax convex–concave fractional program, termed as robust minimax fractional program, and the optimistic counterpart of its uncertain conventional dual program, called optimistic dual. In the case of a robust minimax linear fractional program with scenario uncertainty in the numerator of the objective function, we show that the optimistic dual is a simple linear program when the constraint uncertainty is expressed as bounded intervals. We also show that the dual can be reformulated as a second-order cone programming problem when the constraint uncertainty is given by ellipsoids. In these cases, the optimistic dual problems are computationally tractable and their solutions can be validated in polynomial time. We further show that, for robust minimax linear fractional programs with interval uncertainty, the conventional dual of its robust counterpart and the optimistic dual are equivalent.  相似文献   

14.
In order to study the behavior of interior-point methods on very large-scale linear programming problems, we consider the application of such methods to continuous semi-infinite linear programming problems in both primal and dual form. By considering different discretizations of such problems we are led to a certain invariance property for (finite-dimensional) interior-point methods. We find that while many methods are invariant, several, including all those with the currently best complexity bound, are not. We then devise natural extensions of invariant methods to the semi-infinite case. Our motivation comes from our belief that for a method to work well on large-scale linear programming problems, it should be effective on fine discretizations of a semi-infinite problem and it should have a natural extension to the limiting semi-infinite case.Research supported in part by NSF, AFORS and ONR through NSF grant DMS-8920550.  相似文献   

15.
On the convergence of cross decomposition   总被引:2,自引:0,他引:2  
Cross decomposition is a recent method for mixed integer programming problems, exploiting simultaneously both the primal and the dual structure of the problem, thus combining the advantages of Dantzig—Wolfe decomposition and Benders decomposition. Finite convergence of the algorithm equipped with some simple convergence tests has been proved. Stronger convergence tests have been proposed, but not shown to yield finite convergence.In this paper cross decomposition is generalized and applied to linear programming problems, mixed integer programming problems and nonlinear programming problems (with and without linear parts). Using the stronger convergence tests finite exact convergence is shown in the first cases. Unbounded cases are discussed and also included in the convergence tests. The behaviour of the algorithm when parts of the constraint matrix are zero is also discussed. The cross decomposition procedure is generalized (by using generalized Benders decomposition) in order to enable the solution of nonlinear programming problems.  相似文献   

16.
The usual theory of duality for linear fractional programs is extended by replacing the linear functions in the numerator and denominator by arbitrary positively homogeneous convex functions. In the constraints, the positive orthant inR n is replaced by an arbitrary cone. The resultant duality theorem contains a recent result of Chandra and Gulati as a special case.The authors wish to thank the referee for a number of valuable suggestions, particularly improvements in Theorem 3.4 and Corollary 3.1.  相似文献   

17.
A parallel algorithm for constrained concave quadratic global minimization   总被引:2,自引:0,他引:2  
The global minimization of large-scale concave quadratic problems over a bounded polyhedral set using a parallel branch and bound approach is considered. The objective function consists of both a concave part (nonlinear variables) and a strictly linear part, which are coupled by the linear constraints. These large-scale problems are characterized by having the number of linear variables much greater than the number of nonlinear variables. A linear underestimating function to the concave part of the objective is easily constructed and minimized over the feasible domain to get both upper and lower bounds on the global minimum function value. At each minor iteration of the algorithm, the feasible domain is divided into subregions and linear underestimating problems over each subregion are solved in parallel. Branch and bound techniques can then be used to eliminate parts of the feasible domain from consideration and improve the upper and lower bounds. It is shown that the algorithm guarantees that a solution is obtained to within any specified tolerance in a finite number of steps. Computational results are presented for problems with 25 and 50 nonlinear variables and up to 400 linear variables. These results were obtained on a four processor CRAY2 using both sequential and parallel implementations of the algorithm. The average parallel solution time was approximately 15 seconds for problems with 400 linear variables and a relative tolerance of 0.001. For a relative tolerance of 0.1, the average computation time appears to increase only linearly with the number of linear variables.  相似文献   

18.
An algorithm for generalized fractional programs   总被引:3,自引:0,他引:3  
An algorithm is suggested that finds the constrained minimum of the maximum of finitely many ratios. The method involves a sequence of linear (convex) subproblems if the ratios are linear (convex-concave). Convergence results as well as rate of convergence results are derived. Special consideration is given to the case of (a) compact feasible regions and (b) linear ratios.The research of S. Schaible was supported by Grant Nos. A4534 and A5408 from NSERC. The authors thank two anonymous referees for their helpful remarks.  相似文献   

19.
Second-order cone programs are a class of convex optimization problems. We refer to them as deterministic second-order cone programs (DSCOPs) since data defining them are deterministic. In DSOCPs we minimize a linear objective function over the intersection of an affine set and a product of second-order (Lorentz) cones. Stochastic programs have been studied since 1950s as a tool for handling uncertainty in data defining classes of optimization problems such as linear and quadratic programs. Stochastic second-order cone programs (SSOCPs) with recourse is a class of optimization problems that defined to handle uncertainty in data defining DSOCPs. In this paper we describe four application models leading to SSOCPs.  相似文献   

20.
The quadratic double-ratio minimax optimization (QRM) admits a generalized linear conic fractional reformulation. It leads to two algorithms to globally solve (QRM) from the primal and dual sides, respectively. The hidden convexity of (QRM) remains unknown except for the special case when both denominators are equal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号