首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 496 毫秒
1.
This paper discusses a condition based maintenance model with exponential failures and fixed inspection intervals for a two-unit system in series. The condition of each unit, such as vibration or heat, is monitored at equidistant time intervals. The condition indicator variables for each unit are used to decide whether to repair an individual unit or to overhaul the whole system. After a maintenance action is performed the monitored condition indicator variable takes on its initial value. Each unit can fail only once within an inspection interval and when one or both units fail the system fails. The probability of failure is exponential and the failure rate is dependent on the condition. The cost to be minimized is the long-run average cost of maintenance actions and failures. We study the optimal solution to this problem obtained via dynamic programming.  相似文献   

2.
Economic and economic-statistical design of a chi-square chart for CBM   总被引:1,自引:0,他引:1  
In this paper, the economic and economic-statistical design of a χ2 chart for a maintenance application is considered. The machine deterioration process is described by a three-state continuous time Markov chain. The machine state is unobservable, except for the failure state. To avoid costly failures, the system is monitored by a χ2 chart. The observation process stochastically related to the machine condition is assumed to be multivariate, normally distributed. When the chart signals, full inspection is performed to determine the actual machine condition. The system can be preventively replaced at a sampling epoch and must be replaced upon failure; preventive replacement costs less than failure replacement. The objective is to find the optimal control chart parameters that minimize the long-run average maintenance cost per unit time. For the economic-statistical design, an additional constraint guaranteeing the occurrence of the true alarm signal on the chart before failure with given probability is considered. For both designs, the objective function is derived using renewal theory.  相似文献   

3.
针对设备维修与备件管理相互影响与制约的问题, 在基于延迟时间理论的基础上, 提出了两阶段点检与备件订购策略联合优化。点检是不完美的, 当点检识别设备的缺陷状态时, 进行预防更新; 设备故障时, 进行故障更新。结合设备更新时备件的状态, 采用更新报酬理论建立了以第一阶段点检时间、第二阶段点检周期和备件订购时间为决策变量, 以最小化单位时间期望成本为目标的模型。最后, 通过人工蜂群算法对模型求解, 并在数值分析中将两阶段点检策略与定期点检策略进行比较, 结果表明:两阶段点检策略始终优于定期点检策略, 验证了所建模型的有效性。  相似文献   

4.
针对考虑库存缓冲区的多目标设备维修问题,以设备维修能力为约束条件,获得随机故障设备的不完美预防维修策略。首先,利用准更新过程,表示出设备的随机故障次数。其次,结合设备故障次数表达式,以最大设备可用度和最小生产总成本为多目标构建不完美预防维修模型,使用粒子群算法求解,优化设备可用度与生产总成本,获得更新周期内的库存量和预防维修周期两个决策变量的最优值。最后,通过算例分析,验证了多目标不完美预防维修模型的可用性。  相似文献   

5.
This paper develops availability and maintenance models for single‐unit systems subject to dependent hard and soft failures. A hard failure stops the system immediately, whereas a soft failure only reduces the performance capacity of the system. Dependence between these 2 types of failures is reflected in the fact that each soft failure directly increases the hazard rate of the hard failure. On the basis of such interaction, we derive recursive equations for the system reliability and availability functions. To detect both types of failures, inspections are executed periodically. Furthermore, we investigate the optimal inspection policy via the minimization of the expected cost per unit time. The applicability of the developed availability and maintenance models is validated by a case study on an electrical distribution system.  相似文献   

6.
A simple algebraic formula for combining repair data with prior experience determines the time when a machine should be replaced in order to minimize the expected cost of equipment purchase and maintenance. A random sample from an exponential distribution represents the cost of each repair, and a time-dependent Poisson process represents the intervals between repairs. Bayes' formula provides the basis for combining data with previous judgement about the characteristics of the equipment. Automobile maintenance records support the basic assumptions of the model, and illustrate the method of deciding when to scrap a given machine.  相似文献   

7.
Spare parts demands are usually generated by the need of maintenance either preventively or at failures. These demands are difficult to predict based on historical data of past spare parts usages, and therefore, the optimal inventory control policy may be also difficult to obtain. However, it is well known that maintenance costs are related to the availability of spare parts and the penalty cost of unavailable spare parts consists of usually the cost of, for example, extended downtime for waiting the spare parts and the emergency expedition cost for acquiring the spare parts. On the other hand, proper planned maintenance intervention can reduce the number of failures and associated costs but its performance also depends on the availability of spare parts. This paper presents the joint optimisation for both the inventory control of the spare parts and the Preventive Maintenance (PM) inspection interval. The decision variables are the order interval, PM interval and order quantity. Because of the random nature of plant failures, stochastic cost models for spare parts inventory and maintenance are derived and an enumeration algorithm with stochastic dynamic programming is employed for finding the joint optimal solutions over a finite time horizon. The delay-time concept developed for inspection modelling is used to construct the probabilities of the number of failures and the number of the defective items identified at a PM epoch, which has not been used in this type of problems before. The inventory model follows a periodic review policy but with the demand governed by the need for spare parts due to maintenance. We demonstrate the developed model using a numerical example.  相似文献   

8.
Condition-based maintenance (CBM) aims to reduce maintenance cost and improve equipment reliability by effectively utilizing condition monitoring and prediction information. It is observed that the prediction accuracy often improves with the increase of the age of the component. In this research, we develop a method to quantify the remaining life prediction uncertainty considering the prediction accuracy improvement, and an effective CBM optimization approach to optimize the maintenance schedule. Any type of prognostics methods can be used, including data-driven methods, model-based methods and integrated methods, as long as the prediction method can produce the predicted failure time distribution at any given inspection point. Furthermore, we develop a numerical method to accurately and efficiently evaluate the cost of the CBM policy. The proposed approach is demonstrated using vibration monitoring data collected from pump bearings in the field as well as simulated degradation data. The proposed policy is compared with two benchmark maintenance policies and is found to be more effective.  相似文献   

9.
** Corresponding author. Email: romulo.zequeira{at}utt.fr*** Email: christophe.berenguer{at}utt.fr In this paper, we study the determination of optimal inspectionpolicies when three types of inspections are available: partial,perfect and imperfect. Perfect inspections diagnose withouterror the system state. The system can fail because of threecompeting failure types: I, II and III. Partial inspectionsdetect without error type I failures. Failures of type II canbe detected by imperfect inspections which have non-zero probabilityof false positives. Partial and imperfect inspections are madeat the same time. Type III failures are detectable only by perfectinspections. If the system is found failed in an inspection,a repair is made which renders the system in a good-as-new condition.The system is preventively maintained following an age-basedpolicy. Preventive maintenance actions return the system toa good-as-new condition. We consider cost contributions of inspections,repairs, preventive maintenance and periods of unavailability.The model presented permits to determine the optimal (constant)inter-inspection period for partial, imperfect and perfect inspectionsand the optimal times of preventive maintenance actions.  相似文献   

10.
系统进行有计划的预防性维护时,要求设计一个具有周期T的维护时间表.有一个重要的问题就是这种维护时间表是否具有最佳周期.本文给出最佳随机维护策略问题有解存在的必要条件,并得到结论:当失效时刻Y服从指数分布时,对维护次数N的任意概率分布,最佳随机维护策略问题都无解.  相似文献   

11.
在考虑预防性维修周期和提前期不确定的条件下,分别研究备件存储与其相关的维修费用、缺货费用、库存费用以及订购费用等四种费用之间的关系,明确了备件存储量对各项费用的影响.以各项费用总和最小化为目标,构建了提前期不确定条件下的预防性维修备件存储模型.通过备件存储模型的构建,对备件存储过程中的各项成本进行分析,以期对备件库存策略的确定给出一种解决方案.  相似文献   

12.
A new maintenance model for a system with both deterioration and Poisson failures is proposed. In this model, at any time-instant G S and when the system is operating, one of the following decisions may be taken: (1) stop the system to perform a scheduled minimal maintenance; (2) stop the system to perform an inspection; and (3) no action and allow the system to go on with its operation. Following an inspection, based on the deterioration condition of the system, one of the following decisions may be taken: (a) if the system is in a ‘good’ condition, no maintenance action is taken and a number of periodic minimal maintenance activities are scheduled, starting T1 later; (b) if the system is in an ‘intermediate’ condition, a minimal maintenance is performed and an inspection is scheduled for T2 later (T2 < T1); and (c) if the system is in a ‘bad’ condition, a major maintenance is performed and a number of periodic minimal maintenances are scheduled, starting T1 later. In addition, a deterioration failure is restored by a major repair and a Poisson failure is restored by a minimal repair. Generalised stochastic Petri nets are used to represent and analyse the model, which represents a ‘composite’ maintenance strategy. Based on maximisation of the throughput of the system the benefit of this model compared to (1) an equivalent periodic inspection model and (2) an equivalent planned scheduled maintenance model, is demonstrated. This study presents a new hybrid model with a general framework for incorporating various types of maintenance policies. Also by incorporation of a number of features, this model will be more applicable to real world technical systems (complex systems), although it can be applied to individual components that are part of a complex system.  相似文献   

13.
This paper proposes two optimization models for the periodic inspection of a system with “hard-type” and “soft-type” components. Given that the failures of hard-type components are self-announcing, the component is instantly repaired or replaced, but the failures of soft-type components can only be detected at inspections. A system can operate with a soft failure, but its performance may be reduced. Although a system may be periodically inspected, a hard failure creates an opportunity for additional inspection (opportunistic inspection) of all soft-type components. Two optimization models are discussed in the paper. In the first, soft-type components undergo both periodic and opportunistic inspections to detect possible failures. In the second, hard-type components undergo periodic inspections and are preventively replaced depending on their condition at inspection. Soft-type and hard-type components are either minimally repaired or replaced when they fail. Minimal repair or replacement depends on the state of a component at failure; this, in turn, depends on its age. The paper formulates objective functions for the two models and derives recursive equations for their required expected values. It develops a simulation algorithm to calculate these expected values for a complex model. Several examples are used to illustrate the models and the calculations. The data used in the examples are adapted from a real case study of a hospital’s maintenance data for a general infusion pump.  相似文献   

14.
In this paper, the functional check task specified in reliability-centred maintenance (RCM) is discussed and a general cost model under the assumption of a non-decreasing degradation process is established to jointly optimise the threshold of potential failure and inspection intervals to minimise the expected operating cost per unit time. A gamma process is used to describe a random wear degradation process and illustrate the model.  相似文献   

15.
Consider a system subject to two modes of failures: maintainable and non-maintainable. A failure rate function is related to each failure mode. Whenever the system fails, a minimal repair is performed. Preventive maintenances are performed at integer multiples of a fixed period. The system is replaced when a fixed number of preventive maintenances have been completed. The preventive maintenance is imperfect because it reduces the failure rate of the maintainable failures but does not affect the failure rate of the non-maintainable failures. The two failure modes are dependent in the following way: after each preventive maintenance, the failure rate of the maintainable failures depends on the total of non-maintainable failures since the installation of the system. The problem is to determine an optimal length between successive preventive maintenances and the optimal number of preventive maintenances before the system replacement that minimize the expected cost rate. Optimal preventive maintenance schedules are obtained for non-decreasing failure rates and numerical examples for power law models are given.  相似文献   

16.
This paper considers on-condition maintenance based on periodicinspection and control of a condition parameter which describesthe wear and deterioration of the productive equipment. We developa model based on delay time and imperfect inspection, and builda graphical procedure to choose the best inspection intervalfor different criteria. The interpretation of this graphicalprocedure allows us to emphasize the factors that are relevantfor inspection decision-making.  相似文献   

17.
We examine the long-run average availability and cost rate of a maintained system which deteriorates according to a random-shock process. Shocks arrive according to a Poisson process. The system fails whenever the cumulative damage exceeds a given threshold. The system's failures are not self-announcing, hence, failures must be detected via inspections. The system is inspected at periodic or exponentially distributed intervals. Systems are replaced by preventive maintenance or after failure (corrective maintenance), whichever occurs first. When the distribution function of the shock magnitudes belongs to the class of subexponential distributions, we obtain simple approximations for the availability and the cost rate. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
This paper considers an aging multi‐state system, where the system failure rate varies with time. After any failure, maintenance is performed by an external repair team. Repair rate and cost of each repair are determined by a corresponding corrective maintenance contract with a repair team. The service market can provide different kinds of maintenance contracts to the system owner, which also can be changed after each specified time period. The owner of the system would like to determine a series of repair contracts during the system life cycle in order to minimize the total expected cost while satisfying the system availability. Operating cost, repair cost and penalty cost for system failures should be taken into account. The paper proposes a method for determining such optimal series of maintenance contracts. The method is based on the piecewise constant approximation for an increasing failure rate function in order to assess lower and upper bounds of the total expected cost and system availability by using Markov models. The genetic algorithm is used as the optimization technique. Numerical example is presented to illustrate the approach. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper the maintenance of multi‐component systems, which may be either in operating condition or in the standby mode is studied. A less than perfect testing procedure to detect failures in the latter case is considered. We focus on the existence of an optimum policy weighing the cost incurred under this policy against the cost derived from an undetected failure. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
Novel replacement policies that are hybrids of inspection maintenance and block replacement are developed for an n identical component series system in which the component parts used at successive replacements arise from a heterogeneous population. The heterogeneous nature of components implies a mixed distribution for time to failure. In these circumstances, a hybrid policy comprising two phases, an early inspection phase and a later wear-out replacement phase, may be appropriate. The policy has some similarity to burn-in maintenance. The simplest policy described is such a hybrid and comprises a block-type or periodic replacement policy with an embedded block or periodic inspection policy. We use a three state failure model, in which a component may be good, defective or failed, in order to consider inspection maintenance. Hybrid block replacement and age-based inspection, and opportunistic hybrid policies will also arise naturally in these circumstances and these are briefly investigated. For the simplest policy, an approximation is used to determine the long-run cost and the system reliability. The policies have the interesting property that the system reliability may be a maximum when the long-run cost is close to its minimum. The failure model implies that the effect of maintenance is heterogeneous. The policies themselves imply that maintenance is carried out more prudently to newer than to older systems. The maintenance of traction motor bearings on underground trains is used to illustrate the ideas in the paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号