首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A combined experimental and theoretical study of the ultraviolet photolysis of CH2I2 in water is reported. Ultraviolet photolysis of low concentrations of CH2I2 in water was experimentally observed to lead to almost complete conversion into CH2(OH)2 and 2HI products. Picosecond time-resolved resonance Raman spectroscopy experiments in mixed water/acetonitrile solvents (25%-75% water) showed that appreciable amounts of isodiiodomethane (CH2I-I) were formed within several picoseconds and the decay of the CH2I-I species became substantially shorter with increasing water concentration, suggesting that CH2I-I may be reacting with water. Ab initio calculations demonstrate the CH2I-I species is able to react readily with water via a water-catalyzed O--H-insertion and HI-elimination reaction followed by its CH2I(OH) product undergoing a further water-catalyzed HI-elimination reaction to make a H2C=O product. These HI-elimination reactions produce the two HI leaving groups observed experimentally and the H2C=O product further reacts with water to produce the other final CH2(OH)2 product observed in the photochemistry experiments. These results suggest that CH2I-I is the species that reacts with water to produce the CH2(OH)2 and 2HI products seen in the photochemistry experiments. The present study demonstrates that ultraviolet photolysis of CH2I2 at low concentration leads to efficient dehalogenation and release of multiple strong acid (HI) leaving groups. Some possible ramifications for the decomposition of polyhalomethanes and halomethanols in aqueous environments as well as the photochemistry of polyhalomethanes in the natural environment are briefly discussed.  相似文献   

2.
We examine the chemical reactions of the isodiiodomethane (CH2I-I), .CH2I and CH2I(+) species with ethylene using density functional theory computations. The CH2I-I species readily reacts with ethylene to give the cyclopropane product and an I2 product via a one-step reaction with a barrier height of approximately 2.9 kcal/mol. However, the.CH2I and CH2I(+) species have much more difficult pathways (with larger potential barriers) to react with ethylene via a two-step reaction mechanism. Comparison of experimental results to our present calculation results indicates that the CH2I-I photoproduct species is most likely the methylene transfer agent for the cyclopropanation reaction of olefins via ultraviolet photoexcitation of diiodomethane.  相似文献   

3.
We investigated the chemical reactions of isodihalomethane (CH(2)X-X) and CH(2)X radical species (where X = Cl, Br, or I) with ethylene and the isomerization reactions of CH(2)X-X using density functional theory calculations. The CH(2)X-X species readily reacts with ethylene to give the cyclopropane product and an X(2) product via a one-step reaction with barrier heights of approximately 2.9 kcal/mol for CH(2)I-I, 6.8 kcal/mol for CH(2)Br-Br, and 8.9 kcal/mol for CH(2)Cl-Cl. The CH(2)X reactions with ethylene proceed via a two-step reaction mechanism to give a cyclopropane product and X atom product with much larger barriers to reaction. This suggests that photocyclopropanation reactions using ultraviolet excitation of dihalomethanes most likely occurs via the isodihalomethane species and not the CH(2)X species. The isomerization reactions of CH(2)X-X had barrier heights of approximately 14.4 kcal/mol for CH(2)I-I, 11.8 kcal/mol for CH(2)Br-Br, and 9.1 kcal/mol for CH(2)Cl-Cl. We compare our results for the CH(2)X-X carbenoids to results from previous calculations of the Simmons-Smith-type carbenoids (XCH(2)ZnX) and Li-type carbenoids (LiCH(2)X) and discuss their differences and similarities as methylene transfer agents.  相似文献   

4.
Molecules containing a C-C triple bond, such as HC[triple bond]CH, FC[triple bond]CF, and the C[triple bond]CH radical, are allowed to interact with a partner molecule of H2O, NH3, or HF. Quantum chemical calculations show that these C[triple bond]CH...X H-bonded complexes are bound by up to 4 kcal x mol(-1). More importantly, they can rearrange in such a way that the partner molecule adds to the triple bond so as to form a double C=C bond. Whereas this process is strongly exoergic, there is a high-energy barrier to this rearrangement process. On the other hand, when a second water molecule is added to the complex, it can shuttle protons from the donor part of the complex to the acceptor, and thereby greatly reduce the rearrangement energy barrier. In the case of CCH + 2H2O, this barrier is computed to be less than 4 kcal x mol(-1).  相似文献   

5.
The reactions of the ethynyl radical (C(2)H) with propyne and allene are studied at room temperature using an apparatus that combines the tunability of the vacuum ultraviolet radiation of the Advanced Light Source at Lawrence Berkeley National Laboratory with time-resolved mass spectrometry. The C(2)H radical is prepared by 193-nm photolysis of CF(3)CCH and the mass spectrum of the reacting mixture is monitored in time using synchrotron-photoionization with a dual-sector mass spectrometer. Analysis using photoionization efficiency curves allows the isomer-specific detection of individual polyynes of chemical formula C(5)H(4) produced by both reactions. The product branching ratios are estimated for each isomer. The reaction of propyne with ethynyl gives 50-70% diacetylene (H-C[triple bond]C-C[triple bond]C-H) and 50-30% C(5)H(4), with a C(5)H(4)-isomer distribution of 15-20% ethynylallene (CH(2)=C=CH-C[triple bond]CH) and 85-80% methyldiacetylene (CH(3)-C[triple bond]C-C[triple bond]CH). The reaction of allene with ethynyl gives 35-45% ethynylallene, 20-25% methyldiacetylene and 45-30% 1,4-pentadiyne (HC[triple bond]C-CH(2)-C[triple bond]CH). Diacetylene is most likely not produced by this reaction; an upper limit of 30% on the branching fraction to diacetylene can be derived from the present experiment. The mechanisms of polyynes formation by these reactions as well as the implications for Titan's atmospheric chemistry are discussed.  相似文献   

6.
The 2,2,6,6-tetramethyl-1-piperidinoxy (TEMPO)-containing acetylenic monomers HC[triple bond]CC(6)H(3)-p,m-(CONH-4-TEMPO)(2) (1), HC[triple bond]CC(6)H(3)-p,m-(COO-4-TEMPO)(2) (2), (S,S,S,S)-HC[triple bond]CC(6)H(3)-p,m-[CO-NHCH{COO-(4-TEMPO)}CH(2)COO-(4-TEMPO)](2) (3), (S,S)-HC[triple bond]CC(6)H(4)CO-NHCH{COO-(4-TEMPO)}CH(2)COO-(4-TEMPO) (4), HC[triple bond]CC(6)H(4)-p-OCO-4-TEMPO (5), HC[triple bond]CCH(2)C(CH(3))(CH(2)OCO-4-TEMPO)(2) (6), HC[triple bond]CCH(2)NHCO-4-TEMPO (7), and HC[triple bond]CCH(2)OCO-4-TEMPO (8) were polymerized to afford novel polymers containing the TEMPO radical at high densities. Monomers 1, 3-6, and 8 provided polymers with average molecular weights of 10 000-136 500 in 62-99 % yield in the presence of a rhodium catalyst, whereas monomers 2 and 7 gave insoluble polymers in 100 % yield. The formed polymers were thermally stable up to approximately 274 degrees C according to thermogravimetric analysis (TGA). All the TEMPO-containing polymers demonstrated reversible charge/discharge processes, whose discharge capacities were 21.3-108 A h kg(-1). In particular, the capacity of poly(1)-, poly(4)-, and poly(5)-based cells reached 108, 96.3, and 89.3 A h kg(-1), respectively, which practically coincided with their theoretical values.  相似文献   

7.
The ortho-benzyne diradical, o-C(6)H(4) has been produced with a supersonic nozzle and its subsequent thermal decomposition has been studied. As the temperature of the nozzle is increased, the benzyne molecule fragments: o-C(6)H(4)+Delta--> products. The thermal dissociation products were identified by three experimental methods: (i) time-of-flight photoionization mass spectrometry, (ii) matrix-isolation Fourier transform infrared absorption spectroscopy, and (iii) chemical ionization mass spectrometry. At the threshold dissociation temperature, o-benzyne cleanly decomposes into acetylene and diacetylene via an apparent retro-Diels-Alder process: o-C(6)H(4)+Delta-->HC triple bond CH+HC triple bond C-C triple bond CH. The experimental Delta(rxn)H(298)(o-C(6)H(4)-->HC triple bond CH+HC triple bond C-C triple bond CH) is found to be 57+/-3 kcal mol(-1). Further experiments with the substituted benzyne, 3,6-(CH(3))(2)-o-C(6)H(2), are consistent with a retro-Diels-Alder fragmentation. But at higher nozzle temperatures, the cracking pattern becomes more complicated. To interpret these experiments, the retro-Diels-Alder fragmentation of o-benzyne has been investigated by rigorous ab initio electronic structure computations. These calculations used basis sets as large as [C(7s6p5d4f3g2h1i)H(6s5p4d3f2g1h)] (cc-pV6Z) and electron correlation treatments as extensive as full coupled cluster through triple excitations (CCSDT), in cases with a perturbative term for connected quadruples [CCSDT(Q)]. Focal point extrapolations of the computational data yield a 0 K barrier for the concerted, C(2v)-symmetric decomposition of o-benzyne, E(b)(o-C(6)H(4)-->HC triple bond CH+HC triple bond C-C triple bond CH)=88.0+/-0.5 kcal mol(-1). A barrier of this magnitude is consistent with the experimental results. A careful assessment of the thermochemistry for the high temperature fragmentation of benzene is presented: C(6)H(6)-->H+[C(6)H(5)]-->H+[o-C(6)H(4)]-->HC triple bond CH+HC triple bond C-C triple bond CH. Benzyne may be an important intermediate in the thermal decomposition of many alkylbenzenes (arenes). High engine temperatures above 1500 K may crack these alkylbenzenes to a mixture of alkyl radicals and phenyl radicals. The phenyl radicals will then dissociate first to benzyne and then to acetylene and diacetylene.  相似文献   

8.
The reactions of the triruthenium cluster complex [Ru3(mu-H)(mu3-eta2-HNNMe2)(CO)9] (1; H2NNMe2=1,1-dimethylhydrazine) with alkynes (PhC triple bond CPh, HC triple bond CH, MeO2CC triple bond CCO2Me, PhC triple bond CH, MeO2CC triple bond CH, HOMe2CC triple bond CH, 2-pyC triple bond CH) give trinuclear complexes containing edge-bridging and/or face-capping alkenyl ligands. Whereas the edge-bridged products are closed triangular species (three Ru-Ru bonds), the face-capped products are open derivatives (two Ru-Ru bonds). For terminal alkynes, products containing gem (RCCH2) and/or trans (RHCCH) alkenyl ligands have been identified in both edge-bridging and face-capping positions, except for the complex [Ru3(mu3-eta2-HNNMe2)(mu3-eta3-HCCH-2-py)(mu-CO)(CO)7], which has the two alkenyl H atoms in a cis arrangement. Under comparable reaction conditions (1:1 molar ratio, THF at reflux, time required for the consumption of complex 1), some reactions give a single product, but most give mixtures of isomers (not all the possible ones), which were separated. To determine the effect of the hydrazido ligand, the reactions of [Ru3(mu-H)(mu3-eta2-MeNNHMe)(CO)9] (2; HMeNNHMe=1,2-dimethylhydrazine) with PhC triple bond CPh, PhC triple bond CH, and HC triple bond CH were also studied. For edge-bridged alkenyl complexes, the Ru--Ru edge that is spanned by the alkenyl ligand depends on the position of the methyl groups on the hydrazido ligand. For face-capped alkenyl complexes, the relative orientation of the hydrazido and alkenyl ligands also depends on the position of the methyl groups on the hydrazido ligand. A kinetic analysis of the reaction of 1 with PhC[triple chemical bond]CPh revealed that the reaction follows an associative mechanism, which implies that incorporation of the alkyne in the cluster is rate-limiting and precedes the release of a CO ligand. X-ray diffraction, IR and NMR spectroscopy, and calculations of minimum-energy structures by DFT methods were used to characterize the products. A comparison of the absolute energies of isomeric compounds (obtained by DFT calculations) helped rationalize the experimental results.  相似文献   

9.
Bicyclic alkenes 1a-e and 5 undergo [2 + 2] cycloaddition with a variety of alkynes PhC(triple bond)CPh, (TMS)C(triple bond)CH, HC(triple bond)C(CH(3))(2)OH, (TMS)C(triple bond)CCO(2)Et, PhC(triple bond)CCH(3), C(2)H(5)C(triple bond)CC(2)H(5), CH(3)C(triple bond)CC(3)H(7), and CH(3)C(triple bond)CC(2)H(5) in the presence of Co(PPh(3))(2)I(2), PPh(3), and Zn powder in toluene to afford the corresponding exo-cyclobutene derivatives 3a-m, 6, and 8a-g in fair to excellent yields. The yield of this cycloaddition is highly sensitive to the cobalt catalyst, solvent, ligand, and temperature used. A mechanism involving a metallacyclopentene intermediate is proposed to account for this cobalt-catalyzed cyclization.  相似文献   

10.
Using pulse radiolysis and steady-state gamma-radiolysis techniques, it has been established that, in air-saturated aqueous solutions, peroxyl radicals CH 2HalOO (*) (Hal = halogen) derived from CH 2Cl 2 and CH 2Br 2 react with dimethyl selenide (Me 2Se), with k on the order of 7 x 10 (7) M (-1) s (-1), to form HCO 2H, CH 2O, CO 2, and CO as final products. An overall two-electron oxidation process leads directly to dimethyl selenoxide (Me 2SeO), along with oxyl radical CH 2HalO (*). The latter subsequently oxidizes another Me 2Se molecule by a much faster one-electron transfer mechanism, leading to the formation of equal yields of CH 2O and the dimer radical cation (Me 2Se) 2 (*+). In absolute terms, these yields amount to 18% and 28% of the CH 2ClO (*) and CH 2BrO (*) yields, respectively, at 1 mM Me 2Se. In competition, CH 2HalO (*) rearranges into (*)CH(OH)Hal. These C-centered radicals react further via two pathways: (a) Addition of an oxygen molecule leads to the corresponding peroxyl radicals, that is, species prone to decomposition into H (+)/O 2 (*-) and formylhalide, HC(O)Hal, which further degrades mostly to H (+)/Hal (-) and CO. (b) Elimination of HHal yields the formyl radical H-C(*)=O with a rate constant of about 6 x 10 (5) s (-1) for Hal = Cl. In an air-saturated solution, the predominant reaction pathway of the H-C(*)=O radical is addition of oxygen. The formylperoxyl radical HC(O)OO (*) thus formed reacts with Me 2Se via an overall two-electron transfer mechanism, giving additional Me 2SeO and formyloxyl radicals HC(O)O(*). The latter rearrange via a 1,2 H-atom shift into (*)C(O)OH, which reacts with O2 to give CO2 and O2(*)(-). The minor fraction of H-C(*)=O undergoes hydration, with an estimated rate constant of k approximately 2 x 10(5) s(-1). The resulting HC(*)(OH)2 radical, upon reaction with O2, yields HCO 2H and H (+)/O2(*-). Some of the conclusions about the reactions of halogenated alkoxyl radicals are supported by quantum chemical calculations [B3LYP/6-31G(d,p)] taking into account the influence of water as a dielectric continuum [by the self-consistent reaction field polarized continuum model (SCRF=PCM) technique]. Based on detailed product studies, mechanisms are proposed for the free-radical degradation of CH 2Cl 2 and CH 2Br 2 in the presence of oxygen and an electron donor (namely, Me 2Se in this study), and properties of the reactive intermediates are discussed.  相似文献   

11.
Organolithium compounds RLi (R = CH(3), CH(3)CH(2), CH(2)=CH, and HC(triple bond)C) and their corresponding hydrocarbons were fully optimized at the MP2/6-311+G(2df,2pd) level. Single-point energy calculations also were carried out at the CCSD(T) and B3LYP levels with the same triple split-valence basis set. Acidities, electron affinities, and bond dissociation energies are reported, and the following general results were found: (1) Alpha-lithio anions are ground-state triplet molecules. (2) Lithium is an acid-enhancing substituent. (3) Conjugate bases of organolithiums are stable with respect to electron loss and therefore are attractive targets for mass spectrometry investigations. (4) Lithium weakens alpha- and beta-C-H bonds, the latter by approximately 25 kcal mol(-1). Consequently, radical chemistry of lithiated compounds at remote sites is a promising area for exploration.  相似文献   

12.
The alkynyl(vinylidene)rhodium(I) complexes trans-[Rh(C[triple bond, length as m-dash]CR)(=C=CHR)(PiPr3)2] 2, 5, 6 react with CO by migratory insertion to give stereoselectively the butenynyl compounds trans-[Rh{eta1-(Z)-C(=CHR)C[triple bond, length as m-dash]CR}(CO)(PiPr3)2](Z)-7-9, of which (Z)-7 (R=Ph) and (Z)-8 (R=tBu) rearrange upon heating or UV irradiation to the (E) isomers. Similarly, trans-[Rh{eta1-C(=CH2)C[triple bond, length as m-dash]CPh}(CO)(PiPr3)2] 12 and trans-[Rh{eta1-(Z)-C(=CHCO2Me)C[triple bond, length as m-dash]CR}(CO)(PiPr3)2](Z)-15, (Z)-16 have been prepared. At room temperature, the corresponding "non-substituted" derivative trans-[Rh{eta1-C(=CH2)C[triple bond, length as m-dash]CH}(CO)(PiPr3)2] 18 is in equilibrium with the butatrienyl isomer trans-[Rh(eta1-CH=]C=C=CH2)(CO)(PiPr3)2] 19 that rearranges photochemically to the alkynyl complex trans-[Rh(C[triple bond, length as m-dash]CCH=CH2)(CO)(PiPr3)2] 20. Reactions of (Z)-7, (E)-7, (Z)-8 and (E)-8 with carboxylic acids R'CO2H (R'=CH3, CF3) yield either the butenyne (Z)- and/or (E)-RC[triple bond, length as m-dash]CCH=CHR or a mixture of the butenyne and the isomeric butatriene, the ratio of which depends on both R and R'. Treatment of 2 (R=Ph) with HCl at -40 degrees C affords five-coordinate [RhCl(C[triple bond, length as m-dash]CPh){(Z)-CH=CHPh}(PiPr3)2] 23, which at room temperature reacts by C-C coupling to give trans-[RhCl{eta2-(Z)-PhC[triple bond, length as m-dash]CCH=CHPh}(PiPr3)2](Z)-21. The related compound trans-[RhCl(eta2-HC[triple bond, length as m-dash]CCH=CH2)(PiPr3)2] 27, prepared from trans-[Rh(C[triple bond, length as m-dash]CH)(=C=CH2)(PiPr3)2] 17 and HCl, rearranges to the vinylvinylidene isomer trans-[RhCl(=C=CHCH=CH2)(PiPr3)2] 28. While stepwise reaction of 2with CF3CO2H yields, via alkynyl(vinyl)rhodium(III) intermediates (Z)-29 and (E)-29, the alkyne complexes trans-[Rh(kappa1-O2CCF3)(eta2-PhC[triple bond, length as m-dash]CCH=CHPh)(PiPr3)2](Z)-30 and (E)-30, from 2 and CH3CO2H the acetato derivative [Rh(kappa2-O2CCH3)(PiPr3)2] 33 and (Z)-PhC[triple bond, length as m-dash]CCH=]CHPh are obtained. From 6 (R=CO2Me) and HCl or HC[triple bond, length as m-dash]CCO2Me the chelate complexes [RhX(C[triple bond, length as m-dash]CCO2Me){kappa2(C,O)-CH=CHC(OMe)=O}(PiPr3)2] 34 (X=Cl) and 35 (X=C[triple bond, length as m-dash]CCO2Me) have been prepared. In contrast to the reactions of [Rh(kappa2-O2CCH3)(C[triple bond, length as m-dash]CE)(CH=CHE)(PiPr3)2] 37(E=CO2Me) with chloride sources which give, via intramolecular C-C coupling, four-coordinate trans-[RhCl{eta2-(E)-EC[triple bond, length as m-dash]CCH=CHE}(PiPr3)2](E)-36, treatment of 37with HC[triple bond, length as m-dash]CE affords, via insertion of the alkyne into the rhodium-vinyl bond, six-coordinate [Rh(kappa2-O2CCH3)(C[triple bond, length as m-dash]CE){eta1-(E,E)-C(=CHE)CH=CHE}(PiPr3)2] 38. The latter reacts with MgCl2 to yield trans-[RhCl{eta2-(E,E)-EC[triple bond, length as m-dash]CC(=CHE)CH=CHE}(PiPr3)2] 39, which, in the presence of CO, generates the substituted hexadienyne (E,E)-EC[triple bond, length as m-dash]CC(=CHE)CH=CHE 40.  相似文献   

13.
The synthesis, isolation and characterisation are reported for a series of terminal aryl/heteroaryl bis(butadiynes) (HC[triple bond]C-C[triple bond]C-Ar-C[triple bond]C-C[triple bond]CH) 4a-e including the X-ray molecular structure of the 2,5-pyridylene derivative 4d; compound 4a and the mono-protected analogue [HC[triple bond]C-C[triple bond]C-Ar-C[triple bond]C-C[triple bond]C-C(OH)Me2] 5a serve as convenient precursors for the synthesis of highly-conjugated oligo(arylenebutadiynylene)s.  相似文献   

14.
Reactions of LAl with ethyne, mono- and disubstituted alkynes, and diyne to aluminacyclopropene LAl[eta2-C2(R1)(R2)] ((L = HC[(CMe)(NAr)]2, Ar = 2,6-iPr2C6H3); R1 = R2 = H, (1); R1 = H, R2 = Ph, (2); R1 = R2 = Me, (3); R1 = SiMe3, R2 = C[triple bond]CSiMe3, (4)) are reported. Compounds 1 and 2 were obtained in equimolar quantities of the starting materials at low temperature. The amount of C2H2 was controlled by removing an excess of C2H2 in the range from -78 to -50 degrees C. Compound 4 can be alternatively prepared by the substitution reaction of LAl[eta2-C2(SiMe3)2] with Me3SiC[triple bond]CC[triple bond]CSiMe3 or by the reductive coupling reaction of LAlI2 with potassium in the presence of Me3SiC[triple bond]CC[triple bond]CSiMe3. The reaction of LAl with excess C2H2 and PhC[triple bond]CH (<1:2) afforded the respective alkenylalkynylaluminum compounds LAl(CH=CH2)(C[triple bond]CH) (5) and LAl(CH=CHPh)(C[triple bond]CPh) (6). The reaction of LAl(eta2-C2Ph2) with C2H2 and PhC[triple bond]CH yielded LAl(CPh=CHPh)(C[triple bond]CH) (7) and LAl(CPh=CHPh)(C[triple bond]CPh) (8), respectively. Rationally, the formation of 5 (or 6) may proceed through the corresponding precursor 1 (or 2). The theoretical studies based on DFT calculations show that an interaction between the Al(I) center and the C[triple bond]C unit needs almost no activation energy. Within the AlC2 ring the computational Al-C bond order of ca. 1 suggests an Al-C sigma bond and therefore less pi electron delocalization over the AlC2 ring. The computed Al-eta2-C2 bond dissociation energies (155-82.6 kJ/mol) indicate a remarkable reactivity of aluminacyclopropene species. Finally, the 1H NMR spectroscopy monitored reaction of LAl(eta2-C2Ph2) and PhC[triple bond]CH in toluene-d8 may reveal an acetylenic hydrogen migration process.  相似文献   

15.
Unlike in conventional organic solvents, where Lewis base catalysts are required, decaborane dehydrogenative alkyne-insertion reactions proceed rapidly in biphasic ionic-liquid/toluene mixtures with a wide variety of terminal and internal alkynes, thus providing efficient, one-step routes to functional o-carborane 1-R-1,2-C2B10H11 and 1-R-2-R'-1,2-C2B10H10 derivatives, including R = C6H5- (1), C6H13- (2), HC[triple bond]C-(CH2)5- (3), (1-C2B10H11)-(CH2)5- (4), CH3CH2C(O)OCH2- (5), (C2H5)2NCH2- (6), NC-(CH2)3- (7), 3-HC[triple bond]C-C6H4- (8), (1-C2B10H11)-1,3-C6H4- (9), HC[triple bond]C-CH2-O-CH2- (10); R,R' = C2H5- (11); R = HOCH2-, R' = CH3- (12); R = BrCH2-; R' = CH3- (13); R = H2C=C(CH3)-, R' = C2H5- (14). The best results were obtained from reactions with only catalytic amounts of bmimCl (1-butyl-3-methylimidazolium chloride), where in many cases reaction times of less than 20 min were required. The experimental data for these reactions, the results observed for the reactions of B10H13(-) salts with alkynes, and the computational studies reported in the third paper in this series all support a reaction sequence involving (1) the initial ionic liquid promoted formation of the B10H13(-) anion, (2) addition of B10H13(-) to the alkyne to form an arachno-R,R'-C2B10H13(-) anion, and (3) protonation of arachno-R,R'-C2B10H13(-) to form the final neutral 1-R-2-R'-1,2-C2B10H10 product with loss of hydrogen.  相似文献   

16.
Laser-ablated W atoms react with CH4 in excess argon to form the CH3-WH, CH2=WH2, and CH[triple bond]WH3 molecules with increasing yield in this order of product stability. These molecules are identified from matrix infrared spectra by isotopic substitution. Tungsten methylidene and methylidyne hydride molecules are reversibly interconverted by alpha-H transfers upon visible and ultraviolet irradiations. Matrix infrared spectra and DFT/B3LYP calculations show that CH[triple bond]WH3 is a stable molecule with C3v symmetry, but other levels of theory were required to describe agostic distortion for CH2=WH2. Analogous reactions with Cr gave only CH3-CrH, which is calculated to be by far the most stable product.  相似文献   

17.
Polyynic structures in fuel-rich low-pressure flames are observed using VUV photoionization molecular-beam mass spectrometry. High-level ab initio calculations of ionization energies for C2nH2 (n=1-5) and partially hydrogenated CnH4 (n=7-8) polyynes are compared with photoionization efficiency measurements in flames fuelled by allene, propyne, and cyclopentene. C2nH2 (n=1-5) intermediates are unambiguously identified, while HC[triple bond, length as m-dash]C-C[triple bond, length as m-dash]C-CH=C=CH2, HC[triple bond, length as m-dash]C-C[triple bond, length as m-dash]C-C[triple bond, length as m-dash]C-CH=CH2 (vinyltriacetylene) and HC[triple bond, length as m-dash]C-C[triple bond, length as m-dash]C-CH[double bond, length as m-dash]CH-C[triple bond, length as m-dash]CH are likely to contribute to the C7H4 and C8H4 signals. Mole fraction profiles as a function of distance from the burner are presented. C7H4 and C8H4 isomers are likely to be formed by reactions of C2H and C4H radicals but other plausible formation pathways are also discussed. Heats of formation and ionization energies of several combustion intermediates have been determined for the first time.  相似文献   

18.
Gas-phase acidities of CH2=C=X (X = CH2, NH, O, and S) and barriers for the identity proton transfers (X=C=CH2 + HC triple bond C-X- right harpoon over left harpoon -X-C triple bond CH + CH2=C=X) as well as geometries and charge distributions of CH2=C=X, HC triple bond C-X- and the transition states of the proton transfer were determined by ab initio methods at the MP2/6-311+G(d,p)//MP2/6-311+G(d,p) and B3LYP/6-311+G(d,p) levels of theory. The acidities were also calculated at the CCSD(T)/6-311+G(2df,p) level. A major objective of this study was to examine how the enhanced unsaturation of CH2=C=X compared to that of CH3CH=X may affect acidities, transition state imbalances, and intrinsic barriers of the identity proton transfer. The results show that the acidities are all higher while the barriers are lower than for the corresponding CH3CH=X series. The transition states are all imbalanced but less so than for the reactions of CH3CH=X.  相似文献   

19.
Dimerization of the alkynylcarbene complex Cp(CO)(2)Re=C(Tol)C(triple bond)CCH(3) (8) occurs at 100 degrees C to give a 1.2:1 mixture of enediyne complexes [Cp(CO)(2)Re](2)[eta(2),eta(2)-TolC(triple bond)CC(CH(3))=C(CH(3))C(triple bond)CTol] (10-Eand 10-Z), showing no intrinsic bias toward trans-enediyne complexes. The cyclopropyl-substituted alkynylcarbene complex Cp(CO)(2)Re=C(Tol)C(triple bond)CC(3)H(5) (11) dimerizes at 120 degrees C to give a 5:1 ratio of enediyne complexes [Cp(CO)(2)Re](2)[eta(2),eta(2)-TolC(triple bond)C(C(3)H(5))C=C(C(3)H(5))C(triple bond)CTol] (12-E and 12-Z); no ring expansion product was observed. This suggests that if intermediate A formed by a [1,1.5] Re shift and having carbene character at the remote alkynyl carbon is involved, then interaction of the neighboring Re with the carbene center greatly diminishes the carbene character as compared with that of free cyclopropyl carbenes. The tethered bis-(alkynylcarbene) complex Cp(CO)(2)Re=C(Tol)C(triple bond)CCH(2)CH(2)CH(2)C(triple bond)CC(Tol)= Re(CO)(2)Cp (13) dimerizes rapidly at 12 degrees C to give the cyclic cis-enediyne complex [Cp(CO)(2)Re](2)[eta(2),eta(2)-TolC(triple bond)CC(CH(2)CH(2)CH(2))=CC(triple bond)CTol] (15). Attempted synthesis of the 1,8-disubstituted naphthalene derivative 1,8-[Cp(CO)(2)Re=C(Tol)C(triple bond)C](2)C(10)H(6) (16), in which the alkynylcarbene units are constrained to a parallel geometry, leads to dimerization to [Cp(CO)(2)Re](2)(eta(2),eta(2)-1,2-(tolylethynyl)acenaphthylene] (17). The very rapid dimerizations of both 13 and 16 provide compelling evidence against mechanisms involving cyclopropene intermediates. A mechanism is proposed which involves rate-determining addition of the carbene center of A to the remote alkynyl carbon of a second alkynylcarbene complex to generate vinyl carbene intermediate C, and rearrangement of C to the enediyne complex by a [1,1.5] Re shift.  相似文献   

20.
The symmetric d(5) trans-bis-alkynyl complexes [Mn(dmpe)(2)(C triple bond CSiR(3))(2)] (R = Me, 1 a; Et, 1 b; Ph, 1 c) (dmpe = 1,2-bis(dimethylphosphino)ethane) have been prepared by the reaction of [Mn(dmpe)(2)Br(2)] with two equivalents of the corresponding acetylide LiC triple bond CSiR(3). The reactions of species 1 with [Cp(2)Fe][PF(6)] yield the corresponding d(4) complexes [Mn(dmpe)(2)(C triple bond CSiR(3))(2)][PF(6)] (R = Me, 2 a; Et, 2 b; Ph, 2 c). These complexes react with NBu(4)F (TBAF) at -10 degrees C to give the desilylated parent acetylide compound [Mn(dmpe)(2)(C triple bond CH)(2)][PF(6)] (6), which is stable only in solution at below 0 degrees C. The asymmetrically substituted trans-bis-alkynyl complexes [Mn(dmpe)(2)(C triple bond CSiR(3))(C triple bond CH)][PF(6)] (R = Me, 7 a; Et, 7 b) related to 6 have been prepared by the reaction of the vinylidene compounds [Mn(dmpe)(2)(C triple bond CSiR(3))(C=CH(2))] (R = Me, 5 a; Et, 5 b) with two equivalents of [Cp(2)Fe][PF(6)] and one equivalent of quinuclidine. The conversion of [Mn(C(5)H(4)Me)(dmpe)I] with Me(3)SiC triple bond CSnMe(3) and dmpe afforded the trans-iodide-alkynyl d(5) complex [Mn(dmpe)(2)(C triple bond CSiMe(3))I] (9). Complex 9 proved to be unstable with regard to ligand disproportionation reactions and could therefore not be oxidized to a unique Mn(III) product, which prevented its further use in acetylide coupling reactions. Compounds 2 react at room temperature with one equivalent of TBAF to form the mixed-valent species [[Mn(dmpe)(2)(C triple bond CH)](2)(micro-C(4))][PF(6)] (11) by C-C coupling of [Mn(dmpe)(2)(C triple bond CH)(C triple bond C*)] radicals generated by deprotonation of 6. In a similar way, the mixed-valent complex [[Mn(dmpe)(2)(C triple bond CSiMe(3))](2)(micro-C(4))][PF(6)] [12](+) is obtained by the reaction of 7 a with one equivalent of DBU (1,8-diazabicyclo[5.4.0]undec-7-ene). The relatively long-lived radical intermediate [Mn(dmpe)(2)(C triple bond CH)(C triple bond C*)] could be trapped as the Mn(I) complex [Mn(dmpe)(2)(C triple bond CH)(triple bond C-CO(2))] (14) by addition of an excess of TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy) to the reaction mixtures of species 2 and TBAF. The neutral dinuclear Mn(II)/Mn(II) compounds [[Mn(dmpe)(2)(C triple bond CR(3))](2)(micro-C(4))] (R = H, 11; R = SiMe(3), 12) are produced by the reduction of [11](+) and [12](+), respectively, with [FeCp(C(6)Me(6))]. [11](+) and [12](+) can also be oxidized with [Cp(2)Fe][PF(6)] to produce the dicationic Mn(III)/Mn(III) species [[Mn(dmpe)(2)(C triple bond CR(3))](2)(micro-C(4))][PF(6)](2) (R = H, [11](2+); R = SiMe(3), [12](2+)). Both redox processes are fully reversible. The dinuclear compounds have been characterized by NMR, IR, UV/Vis, and Raman spectroscopies, CV, and magnetic susceptibilities, as well as elemental analyses. X-ray diffraction studies have been performed on complexes 4 b, 7 b, 9, [12](+), [12](2+), and 14.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号