首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 369 毫秒
1.
This paper proposes an online surrogate model-assisted multiobjective optimization framework to identify optimal remediation strategies for groundwater contaminated with dense non-aqueous phase liquids. The optimization involves three objectives: minimizing the remediation cost and duration and maximizing the contamination removal rate. The proposed framework adopts a multiobjective feasibility-enhanced particle swarm optimization algorithm to solve the optimization model and uses an online surrogate model as a substitute for the time-consuming multiphase flow model for calculating contamination removal rates during the optimization process. The resulting approach allows decision makers to find a balance among the remediation cost, remediation duration and contamination removal rate for remediating contaminated groundwater. The new algorithm is compared with the nondominated sorting genetic algorithm II, which is an extensively applied and well-known algorithm. The results show that the Pareto solutions obtained by the new algorithm have greater diversity and stability than those obtained by the nondominated sorting genetic algorithm II, indicating that the new algorithm is more applicable than the nondominated sorting genetic algorithm II for optimizing remediation strategies for contaminated groundwater. Additionally, the surrogate model and Pareto optimal set obtained by the proposed framework are compared with those of the offline surrogate model-assisted multiobjective optimization framework. The results indicate that the surrogate model accuracy and Pareto front achieved by the proposed framework outperform those of the offline surrogate model-assisted optimization framework. Thus, we conclude that the proposed framework can effectively enhance the surrogate model accuracy and further extend the comprehensive performance of Pareto solutions.  相似文献   

2.
《Optimization》2012,61(4):1057-1080
In this paper, a novel hybrid glowworm swarm optimization (HGSO) algorithm is proposed. The HGSO algorithm embeds predatory behaviour of artificial fish swarm algorithm (AFSA) into glowworm swarm optimization (GSO) algorithm and combines the GSO with differential evolution on the basis of a two-population co-evolution mechanism. In addition, to overcome the premature convergence, the local search strategy based on simulated annealing is applied to make the search of GSO approach the true optimum solution gradually. Finally, several benchmark functions show that HGSO has faster convergence efficiency and higher computational precision, and is more effective for solving constrained multi-modal function optimization problems.  相似文献   

3.
We present a new multiobjective evolutionary algorithm (MOEA), called fast Pareto genetic algorithm (FastPGA), for the simultaneous optimization of multiple objectives where each solution evaluation is computationally- and/or financially-expensive. This is often the case when there are time or resource constraints involved in finding a solution. FastPGA utilizes a new ranking strategy that utilizes more information about Pareto dominance among solutions and niching relations. New genetic operators are employed to enhance the proposed algorithm’s performance in terms of convergence behavior and computational effort as rapid convergence is of utmost concern and highly desired when solving expensive multiobjective optimization problems (MOPs). Computational results for a number of test problems indicate that FastPGA is a promising approach. FastPGA yields similar performance to that of the improved nondominated sorting genetic algorithm (NSGA-II), a widely-accepted benchmark in the MOEA research community. However, FastPGA outperforms NSGA-II when only a small number of solution evaluations are permitted, as would be the case when solving expensive MOPs.  相似文献   

4.
To achieve burdening process optimization of copper strips effectively, a nonlinear constrained multi-objective model is established on the principle of the actual burdening. The problem is formulated with two objectives of minimizing the total cost of raw materials and maximizing the amount of waste material thrown into melting furnace. In this paper, a novel approach called “hybrid multi-objective artificial bee colony” (HMOABC) to solve this model is proposed. The HMOABC algorithm is new swarm intelligence based multi-objective optimization technique inspired by the intelligent foraging behavior of honey bees, summation of normalized objective values and diversified selection (SNOV-DS) and nondominated sorting approach. Two test examples were studied and the performance of HMOABC is evaluated in comparison with other nature inspired techniques which includes nondominated sorting genetic algorithm II (NSGAII) and multi-objective particle swarm optimization (MOPSO). The numerical results demonstrate HMOABC approach is a powerful search and optimization technique for burdening optimization of copper strips.  相似文献   

5.
In this paper, we present the Wolfe’s reduced gradient method for multiobjective (multicriteria) optimization. We precisely deal with the problem of minimizing nonlinear objectives under linear constraints and propose a reduced Jacobian method, namely a reduced gradient-like method that does not scalarize those programs. As long as there are nondominated solutions, the principle is to determine a direction that decreases all goals at the same time to achieve one of them. Following the reduction strategy, only a reduced search direction is to be found. We show that this latter can be obtained by solving a simple differentiable and convex program at each iteration. Moreover, this method is conceived to recover both the discontinuous and continuous schemes of Wolfe for the single-objective programs. The resulting algorithm is proved to be (globally) convergent to a Pareto KKT-stationary (Pareto critical) point under classical hypotheses and a multiobjective Armijo line search condition. Finally, experiment results over test problems show a net performance of the proposed algorithm and its superiority against a classical scalarization approach, both in the quality of the approximated Pareto front and in the computational effort.  相似文献   

6.
Metaheuristic optimization algorithms have become popular choice for solving complex and intricate problems which are otherwise difficult to solve by traditional methods. In the present study an attempt is made to review the hybrid optimization techniques in which one main algorithm is a well known metaheuristic; particle swarm optimization or PSO. Hybridization is a method of combining two (or more) techniques in a judicious manner such that the resulting algorithm contains the positive features of both (or all) the algorithms. Depending on the algorithm/s used we made three classifications as (i) Hybridization of PSO and genetic algorithms (ii) Hybridization of PSO with differential evolution and (iii) Hybridization of PSO with other techniques. Where, other techniques include various local and global search methods. Besides giving the review we also show a comparison of three hybrid PSO algorithms; hybrid differential evolution particle swarm optimization (DE-PSO), adaptive mutation particle swarm optimization (AMPSO) and hybrid genetic algorithm particle swarm optimization (GA-PSO) on a test suite of nine conventional benchmark problems.  相似文献   

7.
Recently, a general-purpose local-search heuristic method called extremal optimization (EO) has been successfully applied to some NP-hard combinatorial optimization problems. This paper presents an investigation on EO with its application in numerical multiobjective optimization and proposes a new novel elitist (1 + λ) multiobjective algorithm, called multiobjective extremal optimization (MOEO). In order to extend EO to solve the multiobjective optimization problems, the Pareto dominance strategy is introduced to the fitness assignment of the proposed approach. We also present a new hybrid mutation operator that enhances the exploratory capabilities of our algorithm. The proposed approach is validated using five popular benchmark functions. The simulation results indicate that the proposed approach is highly competitive with the state-of-the-art multiobjective evolutionary algorithms. Thus MOEO can be considered a good alternative to solve numerical multiobjective optimization problems.  相似文献   

8.
Multicriteria optimization with a multiobjective golden section line search   总被引:1,自引:0,他引:1  
This work presents an algorithm for multiobjective optimization that is structured as: (i) a descent direction is calculated, within the cone of descent and feasible directions, and (ii) a multiobjective line search is conducted over such direction, with a new multiobjective golden section segment partitioning scheme that directly finds line-constrained efficient points that dominate the current one. This multiobjective line search procedure exploits the structure of the line-constrained efficient set, presenting a faster compression rate of the search segment than single-objective golden section line search. The proposed multiobjective optimization algorithm converges to points that satisfy the Kuhn-Tucker first-order necessary conditions for efficiency (the Pareto-critical points). Numerical results on two antenna design problems support the conclusion that the proposed method can solve robustly difficult nonlinear multiobjective problems defined in terms of computationally expensive black-box objective functions.  相似文献   

9.
The barebones differential evolution (BBDE) is a new, almost parameter-free optimization algorithm that is a hybrid of the barebones particle swarm optimizer and differential evolution. Differential evolution is used to mutate, for each particle, the attractor associated with that particle, defined as a weighted average of its personal and neighborhood best positions. The performance of the proposed approach is investigated and compared with differential evolution, a Von Neumann particle swarm optimizer and a barebones particle swarm optimizer. The experiments conducted show that the BBDE provides excellent results with the added advantage of little, almost no parameter tuning. Moreover, the performance of the barebones differential evolution using the ring and Von Neumann neighborhood topologies is investigated. Finally, the application of the BBDE to the real-world problem of unsupervised image classification is investigated. Experimental results show that the proposed approach performs very well compared to other state-of-the-art clustering algorithms in all measured criteria.  相似文献   

10.
为改善粒子群优化算法在解决复杂优化问题时收敛质量不高的不足,提出了一种改进的粒子群优化算法,即混合变异粒子群优化算法(HMPSO).HMPSO算法采用了带有随机因子的惯性权重取值更新策略,降低了标准粒子群优化算法中由于粒子飞行速度过大而错过最优解的概率,从而加速了算法的收敛速度.此外,通过混合变异进化环节的引入,缓解了粒子种群在进化过程中的多样性与收敛性这一矛盾,使得算法的全局探索与局部开发得到有效平衡.利用经典的基准测试函数和平面冗余机械臂逆运动学问题的求解来验证提出算法的有效性,试验结果表明:与其他算法相比,HMPSO算法具有更快的收敛速度、更高的收敛精度、更强的收敛稳定性以及更低的计算成本.  相似文献   

11.
本文面向企业运营管理实践,构建了一种基于联合补货策略的选址-库存-配送集成优化新模型。作为典型的NP-hard问题,传统算法难以高效稳定地求解,故本文设计了一种新的混合果蝇优化算法(Fruit Fly Optimization Algorithm, FOA),通过引入进化算法的信息交换、变异、选择操作来增强算法局部寻优能力,采取概率性飞行策略来平衡算法的全局寻优与局部寻优。算例结果表明,新混合FOA算法的准确性和稳定性较标准FOA有了明显的改善,与差分进化、自适应混合差分进化、粒子群优化相比也具有比较优势。  相似文献   

12.
宋健  邓雪 《运筹与管理》2018,27(9):148-155
针对模糊不确定的证券市场,用可能性均值、下可能性方差和协方差分别替换了投资组合模型中概率均值、方差和协方差,构建了双目标均值-方差投资组合模型。然后采用线性加权法将双目标模型转化为单目标模型,进而提出了一个PSO-AFSA混合算法对其求解。该混合算法中,将粒子群算法搜索的结果作为人工鱼群算法初始鱼群,进一步搜索,这样能有效的避免粒子群算法陷入局部最优。同时,将人工鱼群中的最好位置反馈到粒子群算法的速度更新公式中,指引粒子运动,加快算法收敛。最后,进行实例分析,结果表明:PSO-AFSA混合算法是有效的,混合算法搜索到的全局最优值好于基本粒子群算法搜索到的全局最优值。  相似文献   

13.
During the last two decades, dealing with big data problems has become a major issue for many industries. Although, in recent years, differential evolution has been successful in solving many complex optimization problems, there has been research gaps on using it to solve big data problems. As a real-time big data problem may not be known in advance, determining the appropriate differential evolution operators and parameters to use is a combinatorial optimization problem. Therefore, in this paper, a general differential evolution framework is proposed, in which the most suitable differential evolution algorithm for a problem on hand is adaptively configured. A local search is also employed to increase the exploitation capability of the proposed algorithm. The algorithm is tested on the 2015 big data optimization competition problems (six single objective problems and six multi-objective problems). The results show the superiority of the proposed algorithm to several state-of-the-art algorithms.  相似文献   

14.
《Applied Mathematical Modelling》2014,38(7-8):2000-2014
Real engineering design problems are generally characterized by the presence of many often conflicting and incommensurable objectives. Naturally, these objectives involve many parameters whose possible values may be assigned by the experts. The aim of this paper is to introduce a hybrid approach combining three optimization techniques, dynamic programming (DP), genetic algorithms and particle swarm optimization (PSO). Our approach integrates the merits of both DP and artificial optimization techniques and it has two characteristic features. Firstly, the proposed algorithm converts fuzzy multiobjective optimization problem to a sequence of a crisp nonlinear programming problems. Secondly, the proposed algorithm uses H-SOA for solving nonlinear programming problem. In which, any complex problem under certain structure can be solved and there is no need for the existence of some properties rather than traditional methods that need some features of the problem such as differentiability and continuity. Finally, with different degree of α we get different α-Pareto optimal solution of the problem. A numerical example is given to illustrate the results developed in this paper.  相似文献   

15.
Most real-life decision-making activities require more than one objective to be considered. Therefore, several studies have been presented in the literature that use multiple objectives in decision models. In a mathematical programming context, the majority of these studies deal with two objective functions known as bicriteria optimization, while few of them consider more than two objective functions. In this study, a new algorithm is proposed to generate all nondominated solutions for multiobjective discrete optimization problems with any number of objective functions. In this algorithm, the search is managed over (p − 1)-dimensional rectangles where p represents the number of objectives in the problem and for each rectangle two-stage optimization problems are solved. The algorithm is motivated by the well-known ε-constraint scalarization and its contribution lies in the way rectangles are defined and tracked. The algorithm is compared with former studies on multiobjective knapsack and multiobjective assignment problem instances. The method is highly competitive in terms of solution time and the number of optimization models solved.  相似文献   

16.
This paper introduces a new hybrid algorithmic nature inspired approach based on particle swarm optimization, for solving successfully one of the most popular logistics management problems, the location routing problem (LRP). The proposed algorithm for the solution of the location routing problem, the hybrid particle swarm optimization (HybPSO-LRP), combines a particle swarm optimization (PSO) algorithm, the multiple phase neighborhood search – greedy randomized adaptive search procedure (MPNS-GRASP) algorithm, the expanding neighborhood search (ENS) strategy and a path relinking (PR) strategy. The algorithm is tested on a set of benchmark instances. The results of the algorithm are very satisfactory for these instances and for six of them a new best solution has been found.   相似文献   

17.
This paper presents a new concept for generating approximations to the non-dominated set in multiobjective optimization problems. The approximation set A is constructed by solving several single-objective minimization problems in which a particular function D(A, z) is minimized. A new algorithm to calculate D(A, z) is proposed.No general approach is available to solve the one-dimensional optimization problems, but metaheuristics based on local search procedures are used instead. Tests with multiobjective combinatorial problems whose non-dominated sets are known confirm that CHESS can be used to approximate the non-dominated set. Straightforward parallelization of the CHESS approach is illustrated with examples.The algorithm to calculate D(A, z) can be used in any other applications that need to determine Tchebycheff distances between a point and a dominant-free set.  相似文献   

18.
In this paper we review and propose different adaptations of the GRASP metaheuristic to solve multiobjective combinatorial optimization problems. In particular, we describe several alternatives to specialize the construction and improvement components of GRASP when two or more objectives are considered. GRASP has been successfully coupled with Path Relinking for single-objective optimization. Moreover, we propose different hybridizations of GRASP and Path Relinking for multiobjective optimization. We apply the proposed GRASP with Path Relinking variants to two combinatorial optimization problems, the biobjective orienteering problem and the biobjective path dissimilarity problem. We report on empirical tests with 70 instances and 30 algorithms, that show that the proposed heuristics are competitive with the state-of-the-art methods for these problems.  相似文献   

19.
In recent years, emphasis has been placed on generating quality representations of the nondominated set of multiobjective optimization problems. This paper presents two methods for generating discrete representations with equidistant points for biobjective problems with solution sets determined by convex, polyhedral cones. The Constraint Controlled-Spacing method is based on the epsilon-constraint method with an additional constraint to control the spacing of generated points. The Bilevel Controlled-Spacing method has a bilevel structure with the lower-level generating the nondominated points and the upper-level controlling the spacing, and is extended to multiobjective problems. Both methods are proven to produce (weakly) nondominated points and are demonstrated on a variety of test problems.  相似文献   

20.
This paper discusses simple local search approaches for approximating the efficient set of multiobjective combinatorial optimization problems. We focus on algorithms defined by a neighborhood structure and a dominance relation that iteratively improve an archive of nondominated solutions. Such methods are referred to as dominance-based multiobjective local search. We first provide a concise overview of existing algorithms, and we propose a model trying to unify them through a fine-grained decomposition. The main problem-independent search components of dominance relation, solution selection, neighborhood exploration and archiving are largely discussed. Then, a number of state-of-the-art and original strategies are experimented on solving a permutation flowshop scheduling problem and a traveling salesman problem, both on a two- and a three-objective formulation. Experimental results and a statistical comparison are reported in the paper, and some directions for future research are highlighted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号