首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Yu-Qiang Yuan 《中国物理 B》2022,31(12):120202-120202
We investigate certain rogue waves of a (3+1)-dimensional BKP equation via the Kadomtsev-Petviashili hierarchy reduction method. We obtain semi-rational solutions in the determinant form, which contain two special interactions: (i) one lump develops from a kink soliton and then fuses into the other kink one; (ii) a line rogue wave arises from the segment between two kink solitons and then disappears quickly. We find that such a lump or line rogue wave only survives in a short time and localizes in both space and time, which performs like a rogue wave. Furthermore, the higher-order semi-rational solutions describing the interaction between two lumps (one line rogue wave) and three kink solitons are presented.  相似文献   

2.
The $(2+1)$-dimensional Ito equation is extended to a general form including some nonintegrable effects via introducing generalized bilinear operators. It is pointed out that the nonintegrable $(2+1)$-dimensional Ito equation contains lump solutions and interaction solutions between lump and stripe solitons. The result shows that the lump soliton will be swallowed or arisen by a stripe soliton in a fixed time. Furthermore, by the interaction between a lump and a paired resonant stripe soliton, the lump will be transformed to an instanton or a rogue wave.  相似文献   

3.
This paper retrieves lump solution for (2+1)-dimensional Broer-Kaup-Kupershmidt (BKK) system by the aid of Hirota bilinear method (HBM). We also obtain rogue wave solutions formed by the interaction of lump solution and a pair of stripe solitons. The dynamics of these solutions are figured out graphically by selecting suitable values to parameters.  相似文献   

4.
We study a simplified(3+1)-dimensional model equation and construct a lump solution for the special case of z=y using the Hirota bilinear method.Then,a more general form of lump solution is constructed,which contains more arbitrary autocephalous parameters.In addition,a lumpoff solution is also derived based on the general lump solutions and a stripe soliton.Furthermore,we figure out instanton/rogue wave solutions via introducing two stripe solitons.Finally,one can better illustrate these propagation phenomena of these solutions by analyzing images.  相似文献   

5.
This paper mainly uses Hirota bilinear form to investigate the (2+1)-dimensional asymmetrical Nizhnik-Novikov-Veselov equation. We obtain the general lump solutions and discuss its positiveness, the propagation path, amplitude and position at any time. Based on the general lump solutions, lumpoff solutions which a combination of lump solitons and stripe solitons, are also triumphantly acquired. Similarly, according to the general lump solutions, we are also consider a particular rogue wave by introducing a pair of stripe solitons, and research its predictability which include the time of the rogue wave appearance, position at time, propagation path and the maximum value of wave height. Finally, some figures are given to explain the movement mechanism of these solutions.  相似文献   

6.
Different resonance constraints enrich the behavior of soliton solutions. The soliton molecules, which are the bound states of solitons, can be set off by the velocity resonance. The lump waves, which are localized in all directions in space, are theoretically regarded as a limit form of soliton in some ways. In this paper, a (2+1)-dimensional Sharma–Tasso–Olver–Burgers (STOB) equation is investigated. Soliton (kink) molecule, half periodic kink(HPK) and HPK molecule are studied. Then the lump solution is obtained and the interactions between lump and kink molecule are discussed. The kink molecule-lump solutions exhibit a fusion phenomenon and a rogue (instanton) phenomenon, respectively.  相似文献   

7.
Li Sun  Jiaxin Qi  Hongli An 《理论物理通讯》2020,72(12):125009-115
Based on a special transformation that we introduce, the N-soliton solution of the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation is constructed. By applying the long wave limit and restricting certain conjugation conditions to the related solitons, some novel localized wave solutions are obtained, which contain higher-order breathers and lumps as well as their interactions. In particular, by choosing appropriate parameters involved in the N-solitons, two interaction solutions mixed by a bell-shaped soliton and one breather or by a bell-shaped soliton and one lump are constructed from the 3-soliton solution. Five solutions including two breathers, two lumps, and interaction solutions between one breather and two bell-shaped solitons, one breather and one lump, or one lump and two bell-shaped solitons are constructed from the 4-soliton solution. Five interaction solutions mixed by one breather/lump and three bell-shaped solitons, two breathers/lumps and a bell-shaped soliton, as well as mixing with one lump, one breather and a bell-shaped soliton are constructed from the 5-soliton solution. To study the behaviors that the obtained interaction solutions may have, we present some illustrative numerical simulations, which demonstrate that the choice of the parameters has a great impacts on the types of the solutions and their propagation properties. The method proposed can be effectively used to construct localized interaction solutions of many nonlinear evolution equations. The results obtained may help related experts to understand and study the interaction phenomena of nonlinear localized waves during propagations.  相似文献   

8.
In this work, we investigate the (2+1)-dimensional B-type Kadomtsev–Petviashvili (BKP) equation, which can be used to describe weakly dispersive waves propagating in the quasi media and fluid mechanics. We construct the more general lump solutions, localized in all directions in space, with more arbitrary autocephalous parameters. By considering a stripe soliton generated completely by lump solution, a lumpoff solution is presented. Its lump part is cut by soliton part before or after a specific time, with a specific divergence relationship. Furthermore, combining a pair of stripe solitons, we obtain the special rogue waves when lump solution is cut by double solitons. Our results show that the emerging time and place of the rogue waves can be caught through tracking the moving path of lump solution, and confirming when and where it happens a collision with the visible soliton. Finally, some graphic analysis are discussed to understand the propagation phenomena of these solutions.  相似文献   

9.
Fokas system is the simplest (2+1)-dimensional extension of the nonlinear Schr?dinger (NLS) equation (Eq.(2), Inverse Problems 10 (1994) L19-L22).By appropriately limiting on soliton solutions generated by the Hirota bilinear method, the explicit forms of $n$-th breathers and semi-rational solutions for the Fokas system are derived. The obtained first-order breather exhibits arange of interesting dynamics. For high-order breather, it has more rich dynamical behaviors.The first-order and the second-order breather solutions are given graphically. Using the long wave limit in soliton solutions, rational solutions are obtained, which are used to analyze the mechanism of the rogue wave and lump respectively.By taking a long waves limit of a part of exponential functions in $f$ and $g$ appeared in the bilinear form of the Fokas system, many interesting hybrid solutions are constructed. The hybrid solutions illustrate various superposed wave structures involving rogue waves, lumps, solitons, and periodic line waves. Their rather complicated dynamics are revealed.  相似文献   

10.
We solve using the similarity transformation method a one-dimensionless driven-dissipative nonlinear Schrödinger equation to explore the dynamics of the rogue wave solitons generated in a polariton fluid. Under resonant excitation, we predict the existence of the bright and the dark-rogue waves solitons by varying the external pump source parameter. By considering, a time periodic polariton–polariton interaction and adjusting its frequency, the rogue wave soliton trains occur in a polariton fluid. In addition we observe that, the amplitude of the pump power is responsible to the formation of a the train of the bright and the dark rogue waves solitons.  相似文献   

11.
An averaged variational principle is applied to analyze the nonlinear effect of transverse perturbations (including diffraction) on quasi-one-dimensional soliton propagation governed by various wave equations. It is shown that parameters of the spatiotemporal solitons described by the cubic Schrödinger equation and the Yajima-Oikawa model of interaction between long-and short-wavelength waves satisfy the spatial quintic nonlinear Schrödinger equation for a complex-valued function composed of the amplitude and eikonal of the soliton. Three-dimensional solutions are found for two-component “bullets” having long-and short-wavelength components. Vortex and hole-vortex structures are found for envelope solitons and for two-component solitons in the regime of resonant long/short-wave coupling. Weakly nonlinear behavior of transverse perturbations of one-dimensional soliton solutions in a self-defocusing medium is described by the Kadomtsev-Petviashvili equation. The corresponding rationally localized “lump” solutions can be considered as secondary solitons propagating along the phase fronts of the primary solitons. This conclusion holds for primary solitons described by a broad class of nonlinear wave equations.  相似文献   

12.
We analytically present a family of nonautonomous dark solitons and rogue waves in a planar graded-index grating waveguide with an additional long-period grating.The dark solitons whose dynamics described by the explicit expressions such as the valley,background and wave central position are investigated.We find that dark soliton's depth and the long-period grating have effects on soliton's wave central position;the gain or loss term affects directly both the background and valley of the soliton.For rogue waves,it is reported that one can modulate the distribution of the light intensity by adjusting the parameters of the long-period grating.Additionally,more rogue waves with different evolution behaviors in this special waveguide are demonstrated clearly.  相似文献   

13.
Plasmas are the main constituent of the Universe and the cause of a vast variety of astrophysical, space and terrestrial phenomena. The inhomogeneous nonlinear Schrödinger equation is hereby investigated, which describes the propagation of an electron plasma wave packet with a large wavelength and small amplitude in a medium with a parabolic density and constant interactional damping. By virtue of the double Wronskian identities, the equation is proved to possess the double-Wronskian soliton solutions. Analytic one- and two-soliton solutions are discussed. Amplitude and velocity of the soliton are related to the damping coefficient. Asymptotic analysis is applied for us to investigate the interaction between the two solitons. Overtaking interaction, head-on interaction and bound state of the two solitons are given. From the non-zero potential Lax pair, the first- and second-order rogue-wave solutions are constructed via a generalized Darboux transformation, and influence of the linear and parabolic density profiles on the background density and amplitude of the rogue wave is discussed.  相似文献   

14.
On the basis of N-soliton solutions, space-curved resonant line solitons are derived via a new constraint proposed here, for a generalized(2 + 1)-dimensional fifth-order KdV system. The dynamic properties of these new resonant line solitons are studied in detail. We then discuss the interaction between a resonance line soliton and a lump wave in greater detail. Our results highlight the distinctions between the generalized(2+1)-dimensional fifth-order KdV system and the classical type.  相似文献   

15.
16.
In this paper, we investigate some new interesting solution structures of the(2+1)-dimensional bidirectional Sawada–Kotera(bSK) equation. We obtain soliton molecules by introducing velocity resonance. On the basis of soliton molecules, asymmetric solitons are obtained by changing the distance between two solitons of molecules. Based on the N-soliton solutions,several novel types of mixed solutions are generated, which include the mixed breather-soliton molecule solution by the module resonance of the wave number and partial velocity resonance,the mixed lump-soliton molecule solution obtained by partial velocity resonance and partial long wave limits, and the mixed solutions composed of soliton molecules(asymmetric solitons), lump waves, and breather waves. Some plots are presented to clearly illustrate the dynamic features of these solutions.  相似文献   

17.
Asma Issasfa  Ji Lin 《理论物理通讯》2020,72(12):125003-34
In this paper, a new (3+1)-dimensional nonlinear evolution equation is introduced, through the generalized bilinear operators based on prime number p=3. By Maple symbolic calculation, one-, two-lump, and breather-type periodic soliton solutions are obtained, where the condition of positiveness and analyticity of the lump solution are considered. The interaction solutions between the lump and multi-kink soliton, and the interaction between the lump and breather-type periodic soliton are derived, by combining multi-exponential function or trigonometric sine and cosine functions with a quadratic one. In addition, new interaction solutions between a lump, periodic-solitary waves, and one-, two- or even three-kink solitons are constructed by using the ansatz technique. Finally, the characteristics of these various solutions are exhibited and illustrated graphically.  相似文献   

18.
徐涛  陈勇  林机 《中国物理 B》2017,26(12):120201-120201
We investigate some novel localized waves on the plane wave background in the coupled cubic–quintic nonlinear Schr o¨dinger(CCQNLS) equations through the generalized Darboux transformation(DT). A special vector solution of the Lax pair of the CCQNLS system is elaborately constructed, based on the vector solution, various types of higherorder localized wave solutions of the CCQNLS system are constructed via the generalized DT. These abundant and novel localized waves constructed in the CCQNLS system include higher-order rogue waves, higher-order rogues interacting with multi-soliton or multi-breather separately. The first-and second-order semi-rational localized waves including several free parameters are mainly discussed:(i) the semi-rational solutions degenerate to the first-and second-order vector rogue wave solutions;(ii) hybrid solutions between a first-order rogue wave and a dark or bright soliton, a second-order rogue wave and two dark or bright solitons;(iii) hybrid solutions between a first-order rogue wave and a breather, a second-order rogue wave and two breathers. Some interesting and appealing dynamic properties of these types of localized waves are demonstrated, for example, these nonlinear waves merge with each other markedly by increasing the absolute value of α.These results further uncover some striking dynamic structures in the CCQNLS system.  相似文献   

19.
With the aid of the truncated Painlevé expansion, a set of rational solutions of the (2+1)-dimensional generalized Nizhnik-Novikov-Veselov (GNNV) equation with the quadratic function which contains one lump soliton is derived. By combining this quadratic function and an exponential function, the fusion and fission phenomena occur between one lump soliton and a stripe soliton which are two kinds of typical local excitations. Furthermore, by adding a corresponding inverse exponential function to the above function, we can derive the solution with interaction between one lump soliton and a pair of stripe solitons. The dynamical behaviors of such local solutions are depicted by choosing some appropriate parameters.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号