首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
《Current Applied Physics》2010,10(2):416-418
We studied nonselective, vertical dry etching of GaAs and AlGaAs/GaAs structure in high pressure capacitively coupled BCl3/N2 plasmas. The operating pressure was fixed at 150 m Torr. We found that there was an optimized process condition for nonselective and vertical etching of GaAs and AlGaAs/GaAs at the relatively high pressure. It was noted that there was a range of % N2 (i.e. 20–40%) where nonselective etching of GaAs over AlGaAs could be achieved in the BCl3/N2 mixed plasma. We also found that dry etching of GaAs and AlGaAs/GaAs structure provided quite vertical and smooth surface when % N2 was in the range of 0–20% in the BCl3/N2 plasma. The maximum etch rates for GaAs (0.41 μm/min) and AlGaAs/GaAs structure (0.42 μm/min) were obtained with 20–30% N2 composition in the plasma.  相似文献   

2.
Photoreflectance and photoluminescence studies were performed to characterize InAs ultrathin layer embedded in Si-delta-doped GaAs/AlGaAs high electron mobility transistors. These structures were grown by Molecular Beam Epitaxy on (1 0 0) oriented GaAs substrates with different silicon-delta-doped layer densities. Interband energy transitions in the InAs ultrathin layer quantum well were observed below the GaAs band gap in the photoreflectance spectra, and assigned to electron-heavy-hole (Ee-hh) and electron-light-hole (Ee-lh) fundamental transitions. These transitions were shifted to lower energy with increasing silicon-δ-doping density. This effect is in good agreement with our theoretical results based on a self-consistent solution of the coupled Schrödinger and Poisson equations and was explained by increased escape of photogenerated carriers and enhanced Quantum Confined Stark Effect in the Si-delta-doped InAs/GaAs QW. In the photoreflectance spectra, not only the channel well interband energy transitions were observed, but also features associated with the GaAs and AlGaAs bulk layers located at about 1.427 and 1.8 eV, respectively. By analyzing the Franz-Keldysh Oscillations observed in the spectral characteristics of Si-δ-doped samples, we have determined the internal electric field introduced by ionized Si-δ-doped centers. We have observed an increase in the electric field in the InAs ultrathin layer with increasing silicon content. The results are explained in terms of doping dependent ionized impurities densities and surface charges.  相似文献   

3.
In this work, the analysis, fabrication and optical characterization of a two-dimensional circular photonic crystal (2D-CPC) nano-resonator based on an air/GaAs/air slab waveguide are presented. Four InAs/InGaAs quantum dots (QDs) stacked layers emitting around 1300 nm at room temperature were embedded in a GaAs waveguide layer grown on an Al0.7Ga0.3As layer and GaAs substrate. The patterning of the structure and the membrane release were achieved by using electron beam lithography, ICP plasma etching and selective wet etching of the AlGaAs sacrificial layer. The micro-luminescence spectrum recorded from the fabricated nano-cavity shows a narrow optical transition at the resonance wavelength of about 1282 nm with a FWHM and Q-factor of 6.2 Å and more than 2000, respectively.  相似文献   

4.
The influence of layer-by-layer temperature and substrate rotation on the optical property and uniformity of self-assembled InAs/In0.2Ga0.8As/GaAs quantum dots (QDs) gown with an As2 source was investigated. An improvement in the optical property of QDs was obtained by the precise control and optimization of growth temperature utilized for each layer, i.e., InAs QDs, InGaAs quantum wells, GaAs barriers and AlGaAs layers, respectively. By using a substrate rotation, the QD density increased from ∼1.4×1010 to ∼3.2×1010 cm−2 and its size also slightly increased, indicating a good quality of QDs. It is found that the use of an appropriate substrate rotation during growth improves the room-temperature (RT) optical property and uniformity of QDs across the wafer. For the QD sample with a substrate rotation of 6 rpm, the RT photoluminescence (PL) intensity is much higher and the standard deviation of RT-PL full-width at half-maximum is decreased by 35% compared to that grown without substrate rotation.  相似文献   

5.
Reflection high-energy electron diffraction, atomic force microscopy, transmission electron microscopy, and double-crystal X-ray curves showed that high-quality InAs quantum dot (QD) arrays inserted into GaAs barriers were embedded in an Al0.3Ga0.7As/GaAs heterostructure. The temperature-dependent photoluminescence (PL) spectra of the InAs/GaAs QDs showed that the exciton peak corresponding interband transition from the ground electronic subband to the ground heavy-hole subband (E1-HH1) was dominantly observed and that the peak position and the full width at half maximum corresponding to the interband transitions of the PL spectrum were dependent on the temperature. The activation energy of the electrons confined in the InAs/GaAs QDs was 115 meV. The electronic subband energy and the energy wave function of the Al0.3Ga0.7As/GaAs heterostructures were calculated by using a self-consistent method. The electronic subband energies in the InAs/GaAs QDs were calculated by using a three-dimensional spatial plane wave method, and the value of the calculated (E1-HH1) transition in the InAs/GaAs QDs was in reasonable agreement with that obtained from the PL measurement.  相似文献   

6.
We have used cross-sectional scanning-tunneling microscopy (X-STM) to compare the formation of self-assembled InAs quantum dots (QDs) and wetting layers on AlAs (1 0 0) and GaAs (1 0 0) surfaces. On AlAs we find a larger QD density and smaller QD size than for QDs grown on GaAs under the same growth conditions (500 °C substrate temperature and 1.9 ML indium deposition). The QDs grown on GaAs show both a normal and a lateral gradient in the indium distribution whereas the QDs grown on AlAs show only a normal gradient. The wetting layers on GaAs and AlAs do not show significant differences in their composition profiles. We suggest that the segregation of the wetting layer is mainly strain-driven, whereas the formation of the QDs is also determined by growth kinetics. We have determined the indium composition of the QDs by fitting it to the measured outward relaxation and lattice constant profile of the cleaved surface using a three-dimensional finite element calculation based on elasticity theory.  相似文献   

7.
In order to apply two-dimensional electron-gas-field-effect-transistors (2DEG-FETs) for cell-viability sensors, we investigated the chemical/electrical properties of TiO2 thin films (13-17 nm) prepared with the sol-gel technique on the gate surface of AlGaAs/GaAs 2DEG-FETs. Photochemical/electrochemical reactions on GaAs surface in electrolytes, which induce the degradation of 2DEG-FET performance, are effectively suppressed by introducing a TiO2 thin film on the gate area of 2DEG-FETs. Compared to conventional ion-selective FETs (ISFETs), the TiO2/2DEG-FETs in this study exhibit a high sensitivity (410 mV/mM) for H2O2 detection. TiO2 surfaces show better biocompatibility than GaAs surfaces as demonstrated by direct cell culture on these surfaces.  相似文献   

8.
We propose and demonstrate a novel technique for the fabrication of quantum dot (QD) structures using metal organic chemical vapor deposition (MOCVD). The GaAs quantum dots are grown at the bottom of the two-dimensional V-groove (2DVG) structures which are composed of (1 1 1)A and (1 1 1)B-facets on GaAs(1 0 0). The 2DVG is formed by MOCVD selective growth on a SiO2 patterned substrate. It should be noted that the 2DVGs cannot be formed by a chemical wet etching technique because the facet's anisotropy of etching ratios are different. By changing the growth condition, we can obtain GaAs QD structures which have a size of less than 10 nm, and vertical GaAs quantum wires (V-QWRs) in 2DVGs. We have observed photoluminescence from each structure. We have also demonstrated stacking of GaAs QDs in the 2DVG on GaAs (1 0 0).  相似文献   

9.
采用低压金属有机物化学气相沉积 (LP-MOCVD) 法制备GaSb/GaAs量子点。通过对不同生长温度的样品进行分析发现温度的变化对GaSb/GaAs量子点的相位角无明显影响,量子点的形状是透镜型。由于量子点特殊的应力分布,可实现量子点的"自限制"生长。量子点的化学势不连续性以及Ostwald熟化机制的影响使得量子点尺寸分布在一定范围内不连续,会出现两种尺寸模式的量子点生长。Sb原子的表面迁移率对GaSb/GaAs量子点生长有较大的影响。升高温度可有效改善量子点的分立性,在升温过程中量子点体现出其熟化过程,高温时表面原子的解析附作用对量子点尺寸和密度的影响较大。  相似文献   

10.
We report on measurements of optically induced gate voltage spectroscopy in a GaAs/AlGaAs heterostructure with a high mobility 2-dimensional electron gas (2DEG) in a thin (55 nm) GaAs layer. The optically induced gate voltage between the front gate and the 2DEG is sensitive to excess electron concentrations below 107 cm−2. In the gate voltage spectrum we observe a peak below the bandgap energy of GaAs, which is not observed in the photocurrent, luminescence or excitation spectra. Due to the extremely high sensitivity of this technique we attribute this below bandgap signal to very weak absorption lines below the GaAs bandgap energy by impurity bands or defect absorption. The fall-off of the below bandgap signal varies as exp (hω/E0), where E0 is an indicative for the quality of the heterostructure.  相似文献   

11.
 研究了退火条件和In组份对分子束外延生长的InGaAs量子点(分别 以GaAs或AlG aAs为基体)光学特性的影响。表明:量子点中In含量的增加将导致载流子的定域能增加和基态与激发态之间的能量间隔增大。采用垂直耦合的量子点及宽能带的AlGaAs基体可增 强材料的热稳定性。以AlGaAs为基体的InGaAs量子点,高温后退火工艺 (T= 830℃)可改善低温生长的AlGaAs层的质量,从而改善量子点激光器材料的质量。  相似文献   

12.
We investigated the effect of GaNAs strain-compensating layers (SCLs) on the properties of InAs self-assembled quantum dots (QDs) grown on GaAs (0 0 1) substrates. The GaNAs material can be used as SCL thereby minimizing the net strain, and thus is advantageous for multi-stacking of InAs QDs structures and achieving long wavelength emission. The emission wavelength of InAs QDs can be tuned by changing the nitrogen (N) composition in GaNAs SCLs due to both effects of strain compensation and lowering of potential barrier height. A photoluminescence emission at 77 K was clearly observed for sample with GaN0.024As0.976 SCL. Further, we observed an improvement of optical properties of InAs QDs by replacing the more popular GaAs embedding layers with GaNAs SCLs, which is a result of decreasing non-radiative defects owing to minimizing the total net strain.  相似文献   

13.
We present recent studies of electronic excitations in nanofabricated AlGaAs/GaAs semiconductor quantum dots (QDs) by resonant inelastic light scattering. The resonant light scattering spectra are dominated by excitations from parity-allowed inter-shell transitions between Fock–Darwin levels. In QDs with very few electrons the resonant spectra are characterized by distinct charge and spin excitations that reveal the strong impact of both exchange and correlation effects. A sharp inter-shell spin excitation of the triplet spin QD state with four electrons is identified.  相似文献   

14.
We report on the growth of GaAs and GaAs/AlGaAs heterostructured hexagonal pillar structures using selective area (SA) metalorganic vapor phase epitaxy (MOVPE). By performing growth on SiO2-masked (1 1 1)B GaAs substrates with circular or hexagonal hole openings, extremely uniform array of hexagonal GaAs/AlGaAs pillars consisting {1 1 0} vertical facets with their diameter of order of 100 nm were obtained. Unexpectedly, strong intense light emission was observed for the room temperature photoluminescence measurement of the pillar arrays in triangular lattice, which is promising for the application to the photonic crystals to enhance the light extraction efficiency from the materials with high refractive index. Furthermore, it was also found that hexagonal pillars with size 60 nm and large aspect ratio (>100) by reducing the size of initial hole size of mask, opening a possibility to grow nanowires using epitaxial growth.  相似文献   

15.
Novel, self-assembled quantum dot (QD) structures suitable for single-dot optical spectroscopy are fabricated by combining III–V molecular beam epitaxy and in situ, atomic layer precise etching. Several growth and etching steps are used to produce lateral InAs/GaAs QD bimolecules and unstrained GaAs/AlGaAs QDs with low surface density . Micro-photoluminescence is used to investigate the ensemble and single-QD properties of GaAs QDs. Single-QD spectra show resolution-limited sharp lines at low excitation and broad “shell-structures” at high excitation intensity.  相似文献   

16.
Heterostructure in the catalyst-free GaAs nanowire grown on the Si substrate was studied for the application of optical devices in the next generation. We fabricated AlGaAs/GaAs/AlGaAs quantum well (QW) structure on the side facet of the catalyst-free GaAs nanowire grown by molecular beam epitaxy (MBE). The cathode luminescence (CL) measurement showed that the uniform GaAs quantum well was formed between AlGaAs shell layers. On the basis of this structure, we also grew the thick AlGaAs shell layers (∼700 nm) on GaAs nanowires, and observed whispering gallery mode (WGM) resonant in the thick AlGaAs hexagonal structure.  相似文献   

17.
We report on the growth and optical properties of dense arrays of single GaAs/AlGaAs quantum dot (QD) heterostructures with pitches as small as 300 nm. The samples were grown by organometallic chemical vapor deposition in dense inverted pyramids on {1 1 1}B GaAs substrate pre-patterned using electron beam lithography and wet chemical etching. The growth conditions such as deoxidation and growth temperatures, growth rates, and V/III ratio, had to be chosen quite differently from those employed with micron-size pyramids. Low-temperature micro-photoluminescence and cathodoluminescence spectra of the samples show distinct luminescence from the QDs with a linewidth of less than 1 meV and uniform emission energy for an ensemble of 900 QDs. The possibility of incorporating such QD arrays inside optical microcavity structures is also discussed.  相似文献   

18.
This work examines the optical transitions of a GaAs double quantum ring (DQR) embedded in Al0.3Ga0.7As matrix by photoreflectance spectroscopy (PR). The GaAs DQR was grown by droplet epitaxy (DE). The optical properties of the DQR were investigated by excitation‐intensity and temperature‐dependent PR. The various optical transitions were observed in PR spectra, whereas the photoluminescence (PL) spectrum shows only the DQR and GaAs band emissions. The various optical transitions were identified for the GaAs near‐band‐edge transition, surface confined state (SCS), DQR confined state, wetting layer (WL), spin–orbital split (EGaAs + Δo), and AlGaAs band transition. PR spectroscopy can identify various optical transitions that are invisible in PL. The PR results show that the GaAs/AlGaAs DQR has complex electronic structures due to the various interfaces resulting from DE.  相似文献   

19.
InAs quantum dots (QDs) were grown on InP substrates by metalorganic chemical vapor deposition. The width and height of the dots were 50 and 5.8 nm, respectively on the average and an areal density of 3.0×1010 cm−2 was observed by atomic force microscopy before the capping process. The influences of GaAs, In0.53Ga0.47As, and InP capping layers (5–10 ML thickness) on the InAs/InP QDs were studied. Insertion of a thin GaAs capping layer on the QDs led to a blue shift of up to 146 meV of the photoluminescence (PL) peak and an InGaAs capping layer on the QDs led to a red shift of 64 meV relative to the case when a conventional InP capping layer was used. We were able to tune the emission wavelength of the InAs QDs from 1.43 to 1.89 μm by using the GaAs and InGaAs capping layers. In addition, the full-width at half-maximum of the PL peak decreased from 79 to 26 meV by inserting a 7.5 ML GaAs layer. It is believed that this technique is useful in tailoring the optical properties of the InAs QDs at mid-infrared regime.  相似文献   

20.
张伟  石震武  霍大云  郭小祥  彭长四 《物理学报》2016,65(11):117801-117801
在InAs/GaAs(001)量子点生长过程中, 当InAs沉积量为0.9 ML时, 利用紫外纳秒脉冲激光辐照浸润层表面, 由于高温下In原子的不稳定性, 激光诱导的原子脱附效应被放大, 样品表面出现了原子层移除和纳米孔. 原子力显微镜测试表明纳米孔呈现以[110]方向为长轴(尺寸: 20-50 nm)、[110]方向为短轴(尺寸: 15-40 nm)的表面椭圆开口形状, 孔的深度为0.5-3 nm. 纳米孔的密度与脉冲激光的能量密度正相关. 脉冲激光的辐照对量子点生长产生了显著的影响: 一方面由于纳米孔的表面自由能低, 沉积的InAs优先迁移到孔内, 纳米孔成为量子点优先成核的位置; 另一方面, 孔外的区域因为In原子的脱附, 量子点的成核被抑制. 由于带有纳米孔的浸润层表面具有类似于传统微纳加工技术制备的图形衬底对量子点选择性生长的功能, 该研究为量子点的可控生长提供了一种新的思路.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号