首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Electron transfer from K atoms to oriented CH3CN, CH3NC, and CCl3CN is studied in crossed beams at energies near the threshold for forming an ion pair. For the methyl compounds, the dominant ions are K+ and CN-; the steric asymmetry is very small and energy-independent, characteristic of sideways attack with the electron apparently entering the pi*CN antibonding orbital. Migration of the electron to the sigma*CC orbital to break the C-C bond is greatly facilitated by interaction with the atomic donor. CH2CN- is formed in collisions preferring CH3-end attack, and the steric asymmetry becomes very large near threshold. CCl3CN mostly forms Cl- in collisions slightly favoring the CCl3 end with a small energy dependence with the electron apparently entering the sigma* LUMO. CN- is formed in much smaller yield with a slight preference for the CN end. The parent negative ion CCl3CN- is observed, and a lower limit for its electron affinity is estimated to be 0.3 eV. Fragment ions CCl2CN- and CClCN- are also observed with upper limits for the quantity bond dissociation energy - electron affinity (BDE - EA) estimated to be 0.6 and 1.0 eV, respectively.  相似文献   

2.
The trans diesters of 1,4-cyclohexanediol with a number of acetic acid analogues, CX3COOH, of varying steric hindrance and polarity (CX3 = Me, Et, iso-Pr, tert-Bu, CF3, CH2Cl, CHCl2, CCl3, CH2Br, CHBr2, CBr3) were synthesized, and the axial,axial/equatorial,equatorial conformational equilibria were studied by low-temperature 1H NMR spectroscopy in CD2Cl2. The structures and relative energies of the axial,axial and equatorial,equatorial conformers were calculated at both the MP2/6-311G* and the MP2/6-311+G* levels of theory, and it was only by including diffuse functions that a good correlation of deltaG(o)calcd vs deltaG(o)exptl could be obtained. Both the structures and the energy differences of the axial,axial and equatorial,equatorial conformers are discussed with respect to the established models of conformational analysis, viz., steric 1,3-diaxial and hyperconjugative interactions. Interestingly, the hyperconjugative interactions sigma(C-C)/sigma(C-H) --> sigma*(C-O), together with a steric effect which also destabilizes the equatorial,equatorial conformers on increasing bulk of the substituents, proved to dominate the position of the conformational equilibria. In addition, the preference of the axial,axial conformers with respect to their equatorial,equatorial analogues was greater than expected from the conformational energies of the corresponding substituents in the monosubstituted cyclohexyl esters. The reason for this very interesting and unexpected result is also discussed.  相似文献   

3.
The gas-phase ion chemistry of 1,1,1- and 1,1,2-trichlorotrifluoroethane was investigated with an ion trap mass spectrometer. Following electron ionization both compounds (M) fragment to [M - Cl](+), CX(3)(+), CX(2)(+), CX(+) (X = F and/or Cl) and Cl(+). The reactivity of each of these fragments towards their neutral precursors was studied to obtain product and kinetic data. Whereas [M - Cl](+), CCl(3)(+) and CCl(2)F(+) cations are unreactive under the experimental conditions used, all other species react via halide abstraction to give [M - Cl](+) and, to a far lesser extent, [M - F](+). In addition, CX(2)(+) ions form CClX(2)(+) in a process which formally amounts to chlorine atom abstraction, but more likely involves chloride ion abstraction followed by charge transfer. CX(+) ions also form minor amounts of CX(3)(+) product ions, possibly via chloride abstraction followed by or concerted with dihalocarbene elimination from the (incipient) [M - Cl](+) ion. Trivalent carbenium ions are less reactive than divalent species, which in turn are less reactive than the monovalent ions (reaction efficiencies are given in parentheses): CF(3)(+)(0.70) < CF(2)(+)(0.78) < CF(+)(0.96). More interestingly, within each family of ions reactivity increases with the number of fluorine substituents (e.g. CF(2)(+) > CFCl(+) > CCl(2)(+) and CF(+) > CCl(+)), i.e. reactivity increases with the ion thermochemical stability, as measured by available standard free enthalpies of formation. Evaluation of the energetics involved shows that reactions are largely driven by the stability of the neutrals more than of the ions. Finally, the products observed in the reaction of Cl(+) are attributed to ionization of the neutral via charge transfer and fragmentation.  相似文献   

4.
Electrons are transferred in collisions between potassium atoms and CH(3)NO(2) molecules that have been oriented in space prior to collision. The electron transfer produces K(+) ions, parent negative ions CH(3)NO(2)(-), and the fragment ions e(-), NO(2)(-), and O(-) in amounts that depend on the energy. The positive and negative ions are detected in coincidence by separate time-of-flight mass spectrometers at various collision energies for both CH(3)-end attack and NO(2)-end attack. The steric asymmetry for electrons and CH(3)NO(2)(-) is essentially zero, but the steric asymmetry for NO(2)(-) shows that NO(2)(-) is formed mainly in CH(3)-end collisions. There is evidence that the electrons and NO(2)(-) have the same transient precursor, despite having different steric asymmetries. It appears likely that the precursor is formed by electron transfer mainly in collisions normal to the molecular axis leading to near zero steric asymmetry for the electron. This transient precursor can also eject an NO(2)(-) ion, which is more likely to be removed as KNO(2) salt when K(+) ions are near the NO(2) end of the molecule, with the result that CH(3)-end collisions seem to produce more NO(2)(-).  相似文献   

5.
Beams of sodium atoms with energies of a few eV are crossed with a beam of oriented CH3NO2 molecules to study the effect of collision energy and orientation on electron transfer. The electron transfer produces Na+ ions and free electrons, parent negative ions (CH)NO2-), and fragmentation ions NO2- and O- in proportions that depend on the collision energy. The steric asymmetry is very small or zero and suggests that production of all of the ions is favored by sideways attack with respect to the permanent dipole along the C-N axis. In these experiments, the electron appears to be transferred into the 2B1 state of the anion comprising mainly the pi*NO LUMO, producing a valence-bound state rather than a dipole-bound state.  相似文献   

6.
The potential-energy surfaces for the abstraction and insertion reactions of dialkylsilylene with carbon tetrahalides (CX4) have been characterized in detail using density functional theory (B3LYP), including zero-point corrections. Four CX4 species, CF4, CCl(4), CBr4, and CI(4), were chosen as model reactants. The theoretical investigations described herein suggest that of the three possible reaction paths, the one-halogen-atom abstraction (X abstraction), the one-CX3-group abstraction (CX3 abstraction), and the insertion reaction, the X-abstraction reaction is the most favorable, with a very low activation energy. However, the insertion reaction can lead to the thermodynamically stable products. Moreover, for a given stable dialkylsilylene, the chemical reactivity has been found to increase in the order CF4相似文献   

7.
The role of negative hyperconjugation and anomeric and polar effects in stabilizing the XZHCbetaCalphaYY'- intermediates in SNV reactions was studied computationally by DFT methods. Destabilizing steric effects are also discussed. The following ions were studied: X = CH3O, CH3S, CF3CH2O and Y = Y' = Z = H (7b-7d), Y = Y' = H, Z = CH3O, CH3S, CF3CH2O (7e-7i), YY' = Meldrum's acid-like moiety (Mu), Z = H, (8b-8d), and YY' = Mu, Z = CH3O, CH3S, CF3CH2O (8e-8i). The electron-withdrawing Mu substituent at Calpha stabilizes considerably the intermediates and allows their accumulation. The hyperconjugation ability (HCA) (i.e., the stabilization due to 2p(Calpha) --> sigma*(Cbeta-X) interaction) in 8b-8d follows the order (for X, kcal/mol) CH3S (8.5) > CF3CH2O (7.6) approximately CH3O (7.5). The HCA in 8b-8d is significantly smaller than that in 7b-7d due to charge delocalization in Mu in the former. The calculated solvent (1:1 DMSO/H2O) effect is small. The stability of disubstituted ions (7e-7i and 8e-8i) is larger than that of monosubstituted ions due to additional stabilization by negative hyperconjugation and an anomeric effect. However, steric repulsion between the geminal Cbeta substituents destabilizes these ions. The steric effects are larger when one or both substituents are CH3S. The anomeric stabilization (the energy difference between the anti,anti and gauche,gauche conformers) in the disubstituted anions contributes only a small fraction to their total stabilization. Its order (for the following X/Z pairs, kcal/mol) is CF3CH2O/CH3S (8i, 4.9) > CF3CH2O/CH3O (8h, 3.9) > CH3O/CH3S (8g, 3.3) > CH3S/CH3S (8f, 2.9) > CH3O/CH3O (8e, 2.4). Significantly larger anomeric effects of ca. 8-9 kcal/mol are calculated for the corresponding conjugate acids.  相似文献   

8.
The CX3(+) salts [CCl(3)](+)[Al(OR(F))(4)](-)1, [CCl(3)](+)[(R(F)O)(3)Al-F-Al(OR(F))(3)](-)2, [CBr(3)](+)[Al(OR(F))(4)](-)3, [CBr(3)](+)[(R(F)O)(3)Al-F-Al(OR(F))(3)](-)4 (R(F) = C(CF(3))(3)) were prepared in 56 to 85% yield from CX(4) (X = Cl, Br) and the corresponding silver salts (weight balance, NMR, IR, X-ray structure of 1). The most convenient solvent for the preparation of 1 and 2 is SO(2)ClF but for 3 and 4 it is SO(2). The reactions are complete after about three days stirring at -30 to -40 °C. The salts are stable for weeks in solution at -40 °C and stable for a few hours at RT in the solid state. In SO(2)ClF (1, 2) or SO(2) (3, 4) solution they decompose slowly at -20 °C and within several hours at RT; in general the CBr3(+) salts are more stable than the CCl3(+) homologues. The decomposition products were assigned as CCl(3)F and primarily CBr(2)F(2) (which likely forms as a Lewis acid induced disproportionation product of the initial CBr(3)F). The C-X vibrations of the salts were found in the expected range and the assignments were made based on experimental and calculated data. The IR spectrum of a CBr3(+) salt is for the first time reported here.  相似文献   

9.
We apply an orbital phase theory to the torquoselectivity of the electrocyclic reactions of 3-substituted (X) cyclobutenes. The torquoselectivity is shown to be controlled by the orbital-phase relation of the reacting pi(CC) and sigma(CC) bonds with the sigma(CX) bond geminal to the sigma(CC) bond to be cleaved. The inward rotation of electron-donating sigma(CX) bonds and outward rotation of electron-withdrawing sigma(CX) bonds have been deduced from the orbital-phase theory. Enhancement of the inward rotation by the electron-donating capability of the sigma(CX) bonds is confirmed by the correlation between the torquoselectivity and sigma(CX) orbital energy. The orbital overlaps between the geminal sigma(CX) (sigma(CH)) and sigma(CC) bonds are found to be important as well. Unsaturated substituents with low-lying unoccupied pi orbitals also promote the inward rotation.  相似文献   

10.
Different alkali metal atoms are observed to donate electrons to CF(3)Br molecules that are oriented in space. For collision energies high enough to overcome the Coulomb attraction, a positive ion/negative ion pair is observed and mass-analyzed using coincident time-of-flight mass spectroscopy. The alkali metal cation and various negative ions are observed. The most abundant negative ion is the bromide ion, Br(-), formed preferentially by attack at the Br end of the molecule. The steric asymmetry to produce Br(-) is almost identical for all of the alkali metal donors. Fluoride ions are formed in smaller abundance and reflect completely different behavior among the donors. Sodium and potassium have high thresholds and prefer the CF(3) end of the molecule, whereas cesium prefers the Br end of the molecule. Sodium and potassium apparently interact with the transient CF(3)Br(-) molecular negative ion while it is in the process of decomposing.  相似文献   

11.
The CCl(3)(+) and CBr(3)(+) cations have been synthesized by oxidation of a halide ligand of CCl(4) and CBr(4) at -78 degrees C in SO(2)ClF solvent by use of [XeOTeF(5)][Sb(OTeF(5))(6)]. The CBr(3)(+) cation reacts further with BrOTeF(5) to give CBr(OTeF(5))(2)(+), C(OTeF(5))(3)(+), and Br(2). The [XeOTeF(5)][Sb(OTeF(5))(6)] salt was also found to react with BrOTeF(5) in SO(2)ClF solvent at -78 degrees C to give the Br(OTeF(5))(2)(+) cation. The CCl(3)(+), CBr(3)(+), CBr(OTeF(5))(2)(+), C(OTeF(5))(3)(+), and Br(OTeF(5))(2)(+) cations and C(OTeF(5))(4) have been characterized in SO(2)ClF solution by (13)C and/or (19)F NMR spectroscopy at -78 degrees C. The X-ray crystal structures of the CCl(3)(+), CBr(3)(+), and C(OTeF(5))(3)(+) cations have been determined in [CCl(3)][Sb(OTeF(5))(6)], [CBr(3)][Sb(OTeF(5))(6)].SO(2)ClF, and [C(OTeF(5))(3)][Sb(OTeF(5))(6)].3SO(2)ClF at -173 degrees C. The CCl(3)(+) and CBr(3)(+) salts were stable at room temperature, whereas the CBr(n)(OTeF(5))(3-n)(+) salts were stable at 0 degrees C for several hours. The cations were found to be trigonal planar about carbon, with the CCl(3)(+) and CBr(3)(+) cations showing no significant interactions between their carbon atoms and the fluorine atoms of the Sb(OTeF(5))(6)(-) anions. In contrast, the C(OTeF(5))(3)(+) cation interacts with an oxygen of each of two SO(2)ClF molecules by coordination along the three-fold axis of the cation. The solid-state Raman spectra of the Sb(OTeF(5))(6)(-) salts of CCl(3)(+) and CBr(3)(+) have been obtained and assigned with the aid of electronic structure calculations. The CCl(3)(+) cation displays a well-resolved (35)Cl/(37)Cl isotopic pattern for the symmetric CCl(3) stretch. The energy-minimized geometries, natural charges, and natural bond orders of the CCl(3)(+), CBr(3)(+), CI(3)(+), and C(OTeF(5))(3)(+) cations and of the presently unknown CF(3)(+) cation have been calculated using HF and MP2 methods have been compared with those of the isoelectronic BX(3) molecules (X = F, Cl, Br, I, and OTeF(5)). The (13)C and (11)B chemical shifts for CX(3)(+) (X = Cl, Br, I) and BX(3) (X = F, Cl, Br, I) were calculated by the GIAO method, and their trends were assessed in terms of paramagnetic contributions and spin-orbit coupling.  相似文献   

12.
The syntheses of haloacetates of iron(II) and their reactivity are described. The compound Fe(CF3COO)2, 1, crystallizes from CF3COOH/(CF3CO)2O solution as the polynuclear [Fe(CF3COO)2(CF3COOH)2]n, 2, which contains bridging trifluoroacetates and monodentate trifluoroacetic acid groups. Fe(CF3COO)2(DMF)x, as obtained from Fe(CO)5 and CF3COOH/(CF3CO)2O in DMF, reacts with dioxygen at room temperature to give two micro3-oxo compounds, namely, [Fe3(micro3-O)(CF3COO)6(DMF)3], 3, a Fe(II)-Fe(III)-Fe(III) derivative, and [Fe4(micro3-O)2(micro2-CF3COO)6(CF3COO)2(DMF)4], 4, containing Fe(III) atoms only, which have been characterized by X-ray diffraction methods. Iron(II) chloro- and bromoacetates can be isolated by exchange reactions of iron(II) acetate with chloro- and bromo-substituted acetic acids in moderate to good yields. The stability of iron(II) haloacetates decreases on increasing the atomic weight and the number of halogens on the alpha-carbon atom. The species Fe(CX3COO)2 (X = Cl, 7; Br, 8), in THF solution, slowly convert into [Fe3(micro3-O)(CCl3COO)6(THF)3], 11, or [Fe3(micro3-O)(CBr3COO)6(THF)3][FeBr4], 10, respectively. Likewise, when iron(II) acetate (or trifluoroacetate) is left for several hours in the presence of a variety of haloacetic acids in THF, selective formation of different species, depending on the nature of the starting compound and of the acid employed, is observed. The formation of these products is the result of C-X bond activation (X = Cl, Br) and haloacetato decomposition, which occurs with concomitant oxidation at the metal centers. Carboxylic acid degradation species (CH2XCOOH, CX4, CX3H, CX2H2, X = Cl, Br) have been observed by GC-MS.  相似文献   

13.
H-bonding angle angleYHX has an important effect on the electronic properties of the H-bond Y...HX, such as intra- and intermolecular hyperconjugations and rehybridization, and topological properties of electron density. We studied the multifurcated bent H-bonds of the proton donors H3CZ (Z = F, Cl, Br), H2CO and H2CF2 with the proton acceptors Cl(-) and Br(-) at the four high levels of theory: MP2/6-311++G(d,p), MP2/6-311++G(2df,2p), MP2/6-311++G(3df,3pd) and QCISD/6-311++G(d,p), and found that they are all blue-shifted. These complexes have large interaction energies, 7-12 kcal mol(-1), and large blue shifts, delta r(HC) = -0.0025 --0.006 A and delta v(HC) = 30-90 cm(-1). The natural bond orbital analysis shows that the blue shifts of these H-bonds Y...HnCZ are mainly caused by three factors: rehybridization; indirect intermolecular hyperconjugation n(Y) -->sigma*(CZ), in that the electron density from n(Y) of the proton acceptor is transferred not to sigma*(CH), but to sigma*(CZ) of the donor; intramolecular hyperconjugation n(Z) -->sigma*(CH), in that the electron density in sigma*(CH) comes back to n(Z) of the donor such that the occupancy in sigma*(CH) decreases. The topological properties of the electron density of the bifurcated H-bonds Y...H2CZ are similar to those of the usual linear H-bonds, there is a bond critical point between Y and each hydrogen, and a ring critical point inside the tetragon YHCH. However, the topological properties of electron density of the trifurcated H-bonds Y...H3CZ are essentially different from those of linear H-bonds, in that the intermolecular bond critical point, which represents a closed-shell interaction, is not between Y and hydrogen, but between Y and carbon.  相似文献   

14.
用UB3LYP/6-311++G(d,p)和QCISD(单点能)的方法考察了CBr+O2反应在二重态势能面上的反应机理。研究发现该反应在高温过程中重要,且有两个产物通道,它们分别是BrCO+O和Br+CO2,其中前者为优势通道。为了弄清溴原子取代对次甲基与氧气反应的机理的影响,我们对CBr+O2反应与CH+O2反应的相似性和差异也作了讨论。结果表明:两反应的第一步都是CX(X=H,Br)自由基与氧气反应生成链状过氧化物XCOO,且溴原子取代对反应的活性、产物通道的数量和产物的形成过程等都有影响。  相似文献   

15.
We propose a theory of electron localization or stabilization by electron localization through the interactions between occupied (i) and vacant (j*) orbitals under certain conditions, which have been believed so far to cause only electron delocalization. Electrons localize when the electrons redistributed by the interaction are more stable in the i-th occupied orbital than in the overlap region: h(ij*) > s(ij*)h(ii) for s(ij*) > 0. Electron delocalization occurs when h(ij*) < s(ij*)h(ii) for s(ij*) > 0. The h(ij*) and s(ij*)h(ii) terms represent the energy of the electrons in the overlap region and the energy of the redistributed electrons in the occupied orbital, respectively. The theory of electron localization is substantiated by the correlation of the C-H bond lengths of fluorinated methanes H(4-n)CF(n) (n = 1, 2, 3) to the electron population of the σ(CH) bonding orbital, and successfully applied to understanding blue-shifting hydrogen bonds in F(3)CH···X (X = CO, N(2), OC, Ne, OC(CH(3))(2)) and designing some proton donors, HCO(2)CH(3) and hypervalent molecules HPF(4) and HSF(5), for blue-shifting hydrogen bonds.  相似文献   

16.
Natural bond orbital (NBO) analysis described here demonstrates that trans-hydrogen-bond (trans-H-bond) NMR J couplings in the DNA A-T base pair, h2JNN and h1JNH, are determined largely by three terms: two Lewis-type contributions (the single-orbital contribution from the adenine lone pair and the contribution from the sigmaN3H3 natural bond orbital of the thymine ring) and one contribution from pairwise delocalization of spin density (between the lone pair in adenine and the sigma* antibonding orbital linking N3 and H3 of thymine). For h2JNN coupling, all three contributions are positive, whereas for h1JNH coupling, the delocalization term is negative, and the other two terms are positive, resulting in a small net positive coupling constant. This result rationalizes the experimental findings that the two-bond coupling (h2JNN approximately 9 Hz) is larger than the one-bond coupling (h1JNH approximately 3 Hz) and demonstrates that the same hyperconjugative and steric mechanisms that stabilize the H-bond are involved in the transmission of J coupling information. The N1...H3-N3 H-bond of the DNA A-T base pair is found to exhibit significant covalent character, but steric effects contribute almost equally to the trans-H-bond coupling.  相似文献   

17.
The kinetics of decomposition and subsequent chemistry of adsorbed CF(2)Cl(2), activated by low-energy electron irradiation, have been examined and compared with CCl(4). These molecules have been adsorbed alone and coadsorbed with water ice films of different thicknesses on metal surfaces (Ru; Au) at low temperatures (25 K; 100 K). The studies have been performed with temperature programmed desorption (TPD), reflection absorption infrared spectroscopy (RAIRS), and x-ray photoelectron spectroscopy (XPS). TPD data reveal the efficient decomposition of both halocarbon molecules under electron bombardment, which proceeds via dissociative electron attachment (DEA) of low-energy secondary electrons. The rates of CF(2)Cl(2) and CCl(4) dissociation increase in an H(2)O (D(2)O) environment (2-3x), but the increase is smaller than that reported in recent literature. The highest initial cross sections for halocarbon decomposition coadsorbed with H(2)O, using 180 eV incident electrons, are measured (using TPD) to be 1.0+/-0.2 x 10(-15) cm(2) for CF(2)Cl(2) and 2.5+/-0.2 x 10(-15) cm(2) for CCl(4). RAIRS and XPS studies confirm the decomposition of halocarbon molecules codeposited with water molecules, and provide insights into the irradiation products. Electron-induced generation of Cl(-) and F(-) anions in the halocarbon/water films and production of H(3)O(+), CO(2), and intermediate compounds COF(2) (for CF(2)Cl(2)) and COCl(2), C(2)Cl(4) (for CCl(4)) under electron irradiation have been detected using XPS, TPD, and RAIRS. The products and the decomposition kinetics are similar to those observed in our recent experiments involving x-ray photons as the source of ionizing irradiation.  相似文献   

18.
The possible existence of the CF(5)(-), CCl(5)(-), SiF(5)(-), SiCl(5)(-), GeF(5)(-), and GeCl(5)(-) anions has been investigated using ab initio methods. The species containing Si and Ge as central atoms were found to adopt the D(3h)-symmetry trigonal bipyramidal equilibrium structures whose thermodynamic stabilities were confirmed by examining the most probable fragmentation channels. The ab initio re-examination of the electronic stabilities of the SiF(5)(-), SiCl(5)(-), GeF(5)(-), and GeCl(5)(-) anions [using the OVGF(full) method with the 6-311+G(3df) basis set] led to the very large vertical electron detachment (VDE) energies of 9.316 eV (SiF(5)(-)) and 9.742 eV (GeF(5)(-)), whereas smaller VDEs of 6.196 and 6.452 eV were predicted for the SiCl(5)(-) and GeCl(5)(-) species, respectively. By contrast, the high-symmetry and structurally compact anionic CF(5)(-) and CCl(5)(-) systems cannot exist due to the strongly repulsive potential predicted for the X(-) (F(-) or Cl(-)) approaching the CX(4) (CF(4) or CCl(4)). The formation of weakly bound CX(4)···X(-) (CF(4)···F(-) and CCl(4)···Cl(-)) anionic complexes (consisting of pseudotetrahedral neutral CX(4) with the weakly tethered X(-)) might be expected at low temperatures (approaching 0 K), whereas neither CX(5)(-) (CF(5)(-), CCl(5)(-)) systems nor CX(4)···X(-) (CF(4)···F(-) and CCl(4)···Cl(-)) complexes can exist in the elevated temperatures (above 0K) due to their susceptibility to the fragmentation (leading to the X(-) loss).  相似文献   

19.
The mechanism of olefin substitution at palladium(0) has been studied, and the results provide unique insights into the fundamental reactivity of electron-rich late transition metals. A systematic series of bathocuproine-palladium(0) complexes bearing trans-beta-nitrostyrene ligands (ns(X) = X-C(6)H(4)CH=CHNO(2); X = OCH(3), CH(3), H, Br, CF(3)), (bc)Pd(0)ns(X) (3(X)), was prepared and characterized, and olefin-substitution reactions of these complexes were found to proceed by an associative mechanism. In cross-reactions between (bc)Pd(ns(CH)()3) and ns(X) (X = OCH(3), H, Br, CF(3)), more-electron-deficient olefins react more rapidly (relative rate: ns(CF)()3 > ns(Br) > ns(H) > ns(OCH)()3). Density functional theory calculations of model alkene-substitution reactions at a diimine-palladium(0) center reveal that the palladium center reacts as a nucleophile via attack of a metal-based lone pair on the empty pi orbital of the incoming olefin. This orbital picture contrasts that of traditional ligand-substitution reactions, in which the incoming ligand donates electron density into an acceptor orbital on the metal. On the basis of these results, olefin substitution at palladium(0) is classified as an "inverse-electron-demand" ligand-substitution reaction.  相似文献   

20.
We have made use of classical dynamics trajectory simultions and ab initio electronic structure calculations to estimate the cross sections with which electrons are attached (in electron capture dissociation (ECD)) or transferred (in electron transfer dissociation (ETD)) to a model system that contained both an S-S bond that is cleaved and a -NH(3)(+) positively charged site. We used a Landau-Zener-Stueckelberg curve-crossing approximation to estimate the ETD rates for electron transfer from a CH(3)(-) anion to the -NH(3)(+) Rydberg orbital or the S-S sigma* orbital. We draw conclusions about ECD from our ETD results and from known experimental electron-attachment cross sections for cations and sigma-bonds. We predict the cross section for ETD at the positive site of our model compound to be an order of magnitude larger than that for transfer to the Coulomb-stabilized S-S bond site. We also predict that, in ECD, the cross section for electron capture at the positive site will be up to 3 orders of magnitude larger than that for capture at the S-S bond site. These results seem to suggest that attachment to such positive sites should dominate in producing S-S bond cleavage in our compound. However, we also note that cleavage induced by capture at the positive site will be diminished by an amount that is related to the distance from the positive site to the S-S bond. This dimunition can render cleavage through Coulomb-assisted S-S sigma* attachment competitive for our model compound. Implications for ECD and ETD of peptides and proteins in which SS or N-C(alpha) bonds are cleaved are also discussed, and we explain that such events are most likely susceptible to Coulomb-assisted attachment, because the S-S sigma* and C=O pi* orbitals are the lowest-lying antibonding orbitals in most peptides and proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号